Mostrar el registro sencillo del ítem

dc.contributor.author
Fernandez Corazza, Mariano  
dc.contributor.author
Turovets, Sergei  
dc.contributor.author
Luu, Phan  
dc.contributor.author
Anderson, Erik  
dc.contributor.author
Tucker, Don  
dc.date.available
2018-08-06T23:42:11Z  
dc.date.issued
2016-05  
dc.identifier.citation
Fernandez Corazza, Mariano; Turovets, Sergei; Luu, Phan; Anderson, Erik; Tucker, Don; Transcranial electrical neuromodulation based on the reciprocity principle; Frontiers Research Foundation; Frontiers in Psychiatry; 7; 87; 5-2016; 1-19  
dc.identifier.issn
1664-0640  
dc.identifier.uri
http://hdl.handle.net/11336/54381  
dc.description.abstract
A key challenge in multi-electrode transcranial electrical stimulation (TES) or transcranial direct current stimulation (tDCS) is to find a current injection pattern that delivers the necessary current density at a target and minimizes it in the rest of the head, which is mathematically modeled as an optimization problem. Such an optimization with the Least Squares (LS) or Linearly Constrained Minimum Variance (LCMV) algorithms is generally computationally expensive and requires multiple independent current sources. Based on the reciprocity principle in electroencephalography (EEG) and TES, it could be possible to find the optimal TES patterns quickly whenever the solution of the forward EEG problem is available for a brain region of interest. Here, we investigate the reciprocity principle as a guideline for finding optimal current injection patterns in TES that comply with safety constraints. We define four different trial cortical targets in a detailed seven-tissue finite element head model, and analyze the performance of the reciprocity family of TES methods in terms of electrode density, targeting error, focality, intensity, and directionality using the LS and LCMV solutions as the reference standards. It is found that the reciprocity algorithms show good performance comparable to the LCMV and LS solutions. Comparing the 128 and 256 electrode cases, we found that use of greater electrode density improves focality, directionality, and intensity parameters. The results show that reciprocity principle can be used to quickly determine optimal current injection patterns in TES and help to simplify TES protocols that are consistent with hardware and software availability and with safety constraints.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Frontiers Research Foundation  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
High-Density Electrode Arrays  
dc.subject
Non-Invasive Neuromodulation  
dc.subject
Reciprocity Principle  
dc.subject
Transcranial Direct Current Stimulation  
dc.subject
Transcranial Electrical Stimulation  
dc.subject.classification
Neurociencias  
dc.subject.classification
Medicina Básica  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
Transcranial electrical neuromodulation based on the reciprocity principle  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-08-06T17:42:19Z  
dc.journal.volume
7  
dc.journal.number
87  
dc.journal.pagination
1-19  
dc.journal.pais
Suiza  
dc.journal.ciudad
Lausana  
dc.description.fil
Fil: Fernandez Corazza, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina. University of Oregon; Estados Unidos  
dc.description.fil
Fil: Turovets, Sergei. University of Oregon; Estados Unidos. Electrical Geodesics Inc.; Estados Unidos  
dc.description.fil
Fil: Luu, Phan. University of Oregon; Estados Unidos. Electrical Geodesics Inc.; Estados Unidos  
dc.description.fil
Fil: Anderson, Erik. Electrical Geodesics Inc.; Estados Unidos  
dc.description.fil
Fil: Tucker, Don. University of Oregon; Estados Unidos. Electrical Geodesics Inc.; Estados Unidos  
dc.journal.title
Frontiers in Psychiatry  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3389/fpsyt.2016.00087  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fpsyt.2016.00087/full