Mostrar el registro sencillo del ítem

dc.contributor.author
Cristiano, Piedad María  
dc.contributor.author
Pereyra, Daniel Alberto  
dc.contributor.author
Bucci, Sandra Janet  
dc.contributor.author
Madanes, Nora  
dc.contributor.author
Scholz, Fabian Gustavo  
dc.contributor.author
Goldstein, Guillermo Hernan  
dc.date.available
2018-08-06T00:49:59Z  
dc.date.issued
2016-06  
dc.identifier.citation
Cristiano, Piedad María; Pereyra, Daniel Alberto; Bucci, Sandra Janet; Madanes, Nora; Scholz, Fabian Gustavo; et al.; Remote sensing and ground-based measurements of evapotranspiration in an extreme cold Patagonian desert; John Wiley & Sons Ltd; Hydrological Processes; 30; 24; 6-2016; 4449-4461  
dc.identifier.issn
0885-6087  
dc.identifier.uri
http://hdl.handle.net/11336/54224  
dc.description.abstract
Accurate estimates of seasonal evapotranspiration (ET) at different temporal and spatial scales are essential for understanding the biological and environmental determinants of ecosystem water balance in arid regions and the patterns of water utilization by the vegetation. For this purpose, remote sensing ET estimates of a Patagonian desert in Southern Argentina were verified with field measurements of soil evaporation and plant transpiration using an open top chamber. Root distribution and seasonal variation in soil volumetric water content were also analysed. There was a high correlation between remote sensing and field measurements of ecosystem water fluxes. A substantial amount of the annual ET occurred in spring and early summer (73.4 mm) using winter rain stored in the soil profile and resulting in water content depletion of the upper soil layers. A smaller amount of annual ET was derived from few rainfall events occurring during the mid or late summer (41.4 mm). According to remote sensing, the 92.9% of the mean annual precipitation returns to the atmosphere by transpiration or evaporation from the bare soil and by canopy interception. Only 7.1% infiltrates to soil layers deeper than 200 cm contributing to the water table recharge. Fourier time series analysis, cross-correlation methods and multiple linear regression models were used to analyse 11 years of remote sensing data to assess determinants of water fluxes. A linear model predicts well the variables that drive complex ecosystem processes such as ET. Leaf area index and air temperature were not linearly correlated to ET because of the multiple interaction among variables resulting in time lags with ET variations and thus these two variables were not included in the linear model. Soil water content, the fraction of photosynthetic active radiation and precipitation explained 86% of the ET monthly variations. The high volumetric water content and the small seasonal variations at 200-cm depth were probably the result of little water uptake from deeper soil horizons by roots with low hydraulic conductivity. Copyright © 2016 John Wiley & Sons, Ltd.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
John Wiley & Sons Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Modis  
dc.subject
Precipitation Pulses  
dc.subject
Root Distribution  
dc.subject
Soil Water Content  
dc.subject
Temperature  
dc.subject
Water Balance  
dc.subject.classification
Otras Ciencias Biológicas  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Remote sensing and ground-based measurements of evapotranspiration in an extreme cold Patagonian desert  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-05-23T13:32:28Z  
dc.journal.volume
30  
dc.journal.number
24  
dc.journal.pagination
4449-4461  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
LOndres  
dc.description.fil
Fil: Cristiano, Piedad María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina  
dc.description.fil
Fil: Pereyra, Daniel Alberto. Universidad Nacional de la Patagonia San Juan Bosco; Argentina  
dc.description.fil
Fil: Bucci, Sandra Janet. Universidad Nacional de la Patagonia San Juan Bosco; Argentina  
dc.description.fil
Fil: Madanes, Nora. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina  
dc.description.fil
Fil: Scholz, Fabian Gustavo. Universidad Nacional de la Patagonia San Juan Bosco; Argentina  
dc.description.fil
Fil: Goldstein, Guillermo Hernan. Miami University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina  
dc.journal.title
Hydrological Processes  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1002/hyp.10934  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/hyp.10934