Artículo
Photodegradation of methylene blue using crystalline titanosilicate quantum-confined semiconductor
Fecha de publicación:
12/2006
Editorial:
American Chemical Society
Revista:
Chemistry Of Materials
ISSN:
0897-4756
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Synthetic sitinakite contains in its structure a discrete wire-like sublattice of linked TiO6 octahedra. This sublattice is held apart by silicate tetrahedra forming one-dimensional channels that run down the c axis. The optical properties of this structural arrangement have been studied and compared with other titanosilicate phases, the best known being ETS-10. Thus, sitinakite which has twice the titanate wire diameter of ETS-10 has a band gap of 4.07 eV compared with 3.87 eV. The reduced electron-hole effective mass of the sitinakite quantum-confined system has been calculated through use of the effective mass model and compared with that of other titanosilicate materials. The sitinakite phase has been shown to effectively photodegrade methylene blue (MB) dye at pH 7 using visible light excitation and displays a higher degradation rate than TiO2 (Degussa, P25) under the same experimental conditions. On the contrary, under UV excitation, the photodegradation rate obtained using P25 is much higher than that using sitinakite. Given that the band edge of sitinkaite is significantly blue shifted compared with that of P25, photodegradation of MB using sitinakite is attributed to sensitization of the MB cationic dye which is strongly adsorbed onto the negatively charged sitinakite surfaces.
Palabras clave:
X-Ray Absorption
,
Titanium Oxide
,
Photocatalysis
,
Ion-Exchange
,
Titosilicate
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CERELA)
Articulos de CENTRO DE REFERENCIA PARA LACTOBACILOS (I)
Articulos de CENTRO DE REFERENCIA PARA LACTOBACILOS (I)
Citación
Luca, Vittorio; Osborne, Michael; Sizgek, Devlet; Griffith, Christopher; Araujo, Paula Zulema; Photodegradation of methylene blue using crystalline titanosilicate quantum-confined semiconductor; American Chemical Society; Chemistry Of Materials; 18; 26; 12-2006; 6132-6138
Compartir
Altmétricas