Mostrar el registro sencillo del ítem
dc.contributor.author
Romeo, Hernan Esteban

dc.contributor.author
Fanovich, Maria Alejandra

dc.date.available
2018-08-02T22:06:35Z
dc.date.issued
2012-05
dc.identifier.citation
Romeo, Hernan Esteban; Fanovich, Maria Alejandra; Functionalized bridged silsesquioxane-based nanostructured microspheres: Performance as novel drug-delivery devices in bone tissue-related applications; Sage Publications Ltd; Journal Of Biomaterials Applications; 26; 8; 5-2012; 987-1012
dc.identifier.issn
0885-3282
dc.identifier.uri
http://hdl.handle.net/11336/54013
dc.description.abstract
Two kinds of functionalized nanostructured hybrid microspheres, based on the bridged silsesquioxane family, were synthesized by employing the sol-gel method via self-assembly of two different organic-inorganic bridged monomers. The architecture reached at molecular level allowed the incorporation of acetylsalicylic acid (ASA) as an anti-inflammatory model drug. The ASA-functionalized microspheres were characterized as delivery devices in simulated body fluid (SBF). The release behaviors of the synthesized microspheres (Fickian or anomalous diffusion mechanisms) were shown to be dependent on the chemical nature of the bridged monomers employed to synthesize the hybrid materials. The functionalized microspheres were proposed as delivery systems into calcium phosphate cements (CPCs), in order to slow down the characteristic drug-delivery kinetics of this kind of bone tissue-related materials. The incorporation of the new functionalized microparticles into the CPCs represented a viable methodology to modify the ASA-release kinetics in comparison to a conventional CPC containing the drug dispersed into the solid phase. The ASA-delivery profiles obtained from the microsphere-loaded CPCs showed that 40-60% of drug can be released after 2 weeks of testing in SBF. The inclusion of the microspheres into the CPC matrices allowed modification of the release profiles through a mechanism that involved two stages: (1) the diffusion of the drug through the organic-inorganic matrix of the microspheres (according to a Fickian or anomalous diffusion, depending on the nanostructuring) and (2) the subsequent diffusion of the drug through the ceramic matrix of the hardened cements. The release behavior of the composite cements was shown to be dependent on the nanostructuring of the hybrid microspheres, which can be selectively tailored by choosing the desired chemical structure of the bridged precursors employed in the sol-gel synthesis. The obtained results demonstrated the ability of this new class of functionalized hybrid microdevices as delivery systems into calcium phosphate materials with potential bone tissue-related drug-delivery applications.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Sage Publications Ltd

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Calcium Phosphate Cements
dc.subject
Composite Biomaterials
dc.subject
Drug-Delivery
dc.subject
Hybrid Materials
dc.subject
Microspheres
dc.subject.classification
Otras Ciencias Químicas

dc.subject.classification
Ciencias Químicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Functionalized bridged silsesquioxane-based nanostructured microspheres: Performance as novel drug-delivery devices in bone tissue-related applications
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-07-11T17:25:40Z
dc.journal.volume
26
dc.journal.number
8
dc.journal.pagination
987-1012
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: Romeo, Hernan Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
dc.description.fil
Fil: Fanovich, Maria Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
dc.journal.title
Journal Of Biomaterials Applications

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1177/0885328210389503
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://journals.sagepub.com/doi/abs/10.1177/0885328210389503
Archivos asociados