Mostrar el registro sencillo del ítem

dc.contributor.author
Romeo, Hernan Esteban  
dc.contributor.author
Fanovich, Maria Alejandra  
dc.date.available
2018-08-02T22:06:35Z  
dc.date.issued
2012-05  
dc.identifier.citation
Romeo, Hernan Esteban; Fanovich, Maria Alejandra; Functionalized bridged silsesquioxane-based nanostructured microspheres: Performance as novel drug-delivery devices in bone tissue-related applications; Sage Publications Ltd; Journal Of Biomaterials Applications; 26; 8; 5-2012; 987-1012  
dc.identifier.issn
0885-3282  
dc.identifier.uri
http://hdl.handle.net/11336/54013  
dc.description.abstract
Two kinds of functionalized nanostructured hybrid microspheres, based on the bridged silsesquioxane family, were synthesized by employing the sol-gel method via self-assembly of two different organic-inorganic bridged monomers. The architecture reached at molecular level allowed the incorporation of acetylsalicylic acid (ASA) as an anti-inflammatory model drug. The ASA-functionalized microspheres were characterized as delivery devices in simulated body fluid (SBF). The release behaviors of the synthesized microspheres (Fickian or anomalous diffusion mechanisms) were shown to be dependent on the chemical nature of the bridged monomers employed to synthesize the hybrid materials. The functionalized microspheres were proposed as delivery systems into calcium phosphate cements (CPCs), in order to slow down the characteristic drug-delivery kinetics of this kind of bone tissue-related materials. The incorporation of the new functionalized microparticles into the CPCs represented a viable methodology to modify the ASA-release kinetics in comparison to a conventional CPC containing the drug dispersed into the solid phase. The ASA-delivery profiles obtained from the microsphere-loaded CPCs showed that 40-60% of drug can be released after 2 weeks of testing in SBF. The inclusion of the microspheres into the CPC matrices allowed modification of the release profiles through a mechanism that involved two stages: (1) the diffusion of the drug through the organic-inorganic matrix of the microspheres (according to a Fickian or anomalous diffusion, depending on the nanostructuring) and (2) the subsequent diffusion of the drug through the ceramic matrix of the hardened cements. The release behavior of the composite cements was shown to be dependent on the nanostructuring of the hybrid microspheres, which can be selectively tailored by choosing the desired chemical structure of the bridged precursors employed in the sol-gel synthesis. The obtained results demonstrated the ability of this new class of functionalized hybrid microdevices as delivery systems into calcium phosphate materials with potential bone tissue-related drug-delivery applications.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Sage Publications Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Calcium Phosphate Cements  
dc.subject
Composite Biomaterials  
dc.subject
Drug-Delivery  
dc.subject
Hybrid Materials  
dc.subject
Microspheres  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Functionalized bridged silsesquioxane-based nanostructured microspheres: Performance as novel drug-delivery devices in bone tissue-related applications  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-07-11T17:25:40Z  
dc.journal.volume
26  
dc.journal.number
8  
dc.journal.pagination
987-1012  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Romeo, Hernan Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina  
dc.description.fil
Fil: Fanovich, Maria Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina  
dc.journal.title
Journal Of Biomaterials Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1177/0885328210389503  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://journals.sagepub.com/doi/abs/10.1177/0885328210389503