Mostrar el registro sencillo del ítem

dc.contributor.author
Inda, María Eugenia  
dc.contributor.author
Oliveira, Rafael Gustavo  
dc.contributor.author
de Mendoza, Diego  
dc.contributor.author
Cybulski, Larisa Estefania  
dc.date.available
2018-08-02T18:19:56Z  
dc.date.issued
2016-11  
dc.identifier.citation
Inda, María Eugenia; Oliveira, Rafael Gustavo; de Mendoza, Diego; Cybulski, Larisa Estefania; The single transmembrane segment of minimal sensor DesK senses temperature via a membrane-thickness caliper; American Society for Microbiology; Journal of Bacteriology; 198; 21; 11-2016; 2945-2954  
dc.identifier.issn
0021-9193  
dc.identifier.uri
http://hdl.handle.net/11336/53922  
dc.description.abstract
Thermosensors detect temperature changes and trigger cellular responses crucial for survival at different temperatures. The thermosensor DesK is a transmembrane (TM) histidine kinase which detects a decrease in temperature through its TM segments (TMS). Here, we address a key issue: how a physical stimulus such as temperature can be converted into a cellular response. We show that the thickness of Bacillus lipid membranes varies with temperature and that such variations can be detected by DesK with great precision. On the basis of genetic studies and measurements of in vitro activity of a DesK construct with a single TMS (minimal sensor DesK [MS-DesK]), reconstituted in liposomes, we propose an interplay mechanism directed by a conserved dyad, phenylalanine 8-lysine 10. This dyad is critical to anchor the only transmembrane segment of the MS-DesK construct to the extracellular water-lipid interphase and is required for the transmembrane segment of MS-DesK to function as a caliper for precise measurement of membrane thickness. The data suggest that positively charged lysine 10, which is located in the hydrophobic core of the membrane but is close to the water-lipid interface, pulls the transmembrane region toward the water phase to localize its charge at the interface. Nevertheless, the hydrophobic residue phenylalanine 8, located at the N-terminal extreme of the TMS, has a strong tendency to remain in the lipid phase, impairing access of lysine 10 to the water phase. The outcome of this interplay is a fine-tuned sensitivity to membrane thickness that elicits conformational changes that favor different signaling states of the protein.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Society for Microbiology  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Thermoregulationthermoregulation  
dc.subject
Protein Kinase  
dc.subject
Liposome Reconstitution  
dc.subject
Lipid Thickness  
dc.subject.classification
Otras Ciencias Biológicas  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
The single transmembrane segment of minimal sensor DesK senses temperature via a membrane-thickness caliper  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-07-23T12:56:17Z  
dc.identifier.eissn
1098-5530  
dc.journal.volume
198  
dc.journal.number
21  
dc.journal.pagination
2945-2954  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington  
dc.description.fil
Fil: Inda, María Eugenia. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Microbiología; Argentina  
dc.description.fil
Fil: Oliveira, Rafael Gustavo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina  
dc.description.fil
Fil: de Mendoza, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina  
dc.description.fil
Fil: Cybulski, Larisa Estefania. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Microbiología; Argentina  
dc.journal.title
Journal of Bacteriology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://jb.asm.org/content/198/21/2945.full  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1128/JB.00431-16