Mostrar el registro sencillo del ítem

dc.contributor.author
Allub, Roberto Jose  
dc.contributor.author
Proetto, Cesar Ramon  
dc.date.available
2018-08-01T14:51:13Z  
dc.date.issued
2015-01-30  
dc.identifier.citation
Allub, Roberto Jose; Proetto, Cesar Ramon; Hybrid quantum dot - superconducting systems: Josephson current and Kondo effect in the narrow-band limit; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 91; 4; 30-1-2015; 4544201-4544211  
dc.identifier.issn
1098-0121  
dc.identifier.uri
http://hdl.handle.net/11336/53733  
dc.description.abstract
The case of a quantum dot connected to two superconducting leads is studied by using the narrow-band limit to describe the superconducting degrees of freedom. The model provides a simple theoretical framework, almost analytical, to analyze the interplay between the Kondo effect, superconductivity, and finite temperature. In the quantum dot Kondo regime, the model is completely characterized by the ratio /J , with the superconducting gap and J an effective antiferromagnetic exchange coupling between the dot and the leads. The model allows us to calculate, at any temperature T , the equilibrium Josephson current through the dot in a very straightforward way as a function of /J . The behavior of the current allows us to distinguish the four types of hybrid junctions: 0, 0 , π , and π. The presence of the 0- and 0 -junction configurations are intrinsically linked to the Kondo effect in the quantum dot, while the π- and π -junction configurations are driven by the superconductivity in the leads. The Josephson critical current has a non-monotonic behavior with temperature, that may be used for the experimental characterization of the fundamental 0 − π transition. The model allows us to obtain easily a phase diagram /J vs temperature, from where we can obtain an overall picture on the stability of the different types of junctions. From the explicit analytical expressions for the ground-state, low-energy excitations, free energy, and Josephson current, it is easy to understand the physical nature of the main features of the critical current and the phase diagram. The results, obtained with a minimum of numerical effort, are in a good qualitative agreement with more demanding calculational approaches aimed to solve the full model.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Physical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Superconductivity  
dc.subject
Kondo Effect  
dc.subject
Josephason Current  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Hybrid quantum dot - superconducting systems: Josephson current and Kondo effect in the narrow-band limit  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-07-11T15:00:25Z  
dc.journal.volume
91  
dc.journal.number
4  
dc.journal.pagination
4544201-4544211  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Allub, Roberto Jose. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina  
dc.description.fil
Fil: Proetto, Cesar Ramon. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina  
dc.journal.title
Physical Review B: Condensed Matter and Materials Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/ 10.1103/PhysRevB.91.045442  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.91.045442