Mostrar el registro sencillo del ítem

dc.contributor.author
Campbell, Kathleen  
dc.contributor.author
Lynne, Bridget Y.  
dc.contributor.author
Handley, Kim M.  
dc.contributor.author
Jordan, Sacha  
dc.contributor.author
Farmer, Jack D.  
dc.contributor.author
Guido, Diego Martin  
dc.contributor.author
Foucher, Frédéric  
dc.contributor.author
Turner, Susan  
dc.contributor.author
Perry, Randall S.  
dc.date.available
2018-07-31T18:58:34Z  
dc.date.issued
2015-10  
dc.identifier.citation
Campbell, Kathleen; Lynne, Bridget Y.; Handley, Kim M.; Jordan, Sacha; Farmer, Jack D.; et al.; Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record; Mary Ann Liebert; Astrobiology; 15; 10; 10-2015; 858-882  
dc.identifier.issn
1531-1074  
dc.identifier.uri
http://hdl.handle.net/11336/53632  
dc.description.abstract
New Zealand and Argentine (Late Jurassic-Recent) siliceous hot-spring deposits (sinter) reveal preservation pathways of environmentally controlled, microbe-dominated sedimentary facies over geological time scales. Texturally distinctive, laminated to thinly layered, dense and vertically oriented, microtubular "palisade" fabric is common in low-temperature (<40°C) sinter-apron terraces. In modern hot springs, the dark green to brown, sheathed, photosynthetic cyanobacterium Calothrix spp. (family Rivulariaceae) constructs felted palisade mats in shallow terrace(tte) pools actively accreting opaline silica. The resulting stacked layers of silicified coarse filaments a stromatolite are highly porous and readily modified by postdepositional environmental perturbations, secondary silica infill, and diagenetic silica phase mineral transformations (opal-A to quartz). Fossil preservation quality is affected by relative timing of silicification, and later environmental and geological events. A systematic approach was used to characterize palisade fabric in sinters of different ages to refine tools for recognizing biosignatures in extreme environments and to track their long-term preservation pathways into the geological record. Molecular techniques, scanning electron microscopy, Raman spectrometry, X-ray powder diffraction, petrography, and lipid biomarker analyses were applied. Results indicate that microbial communities vary at the micron scale and that early and rapid silicification is paramount to long-term preservation, especially where minimal postdepositional disturbance follows fossilization. Overall, it appears that the most robust biomarkers of fossil microbial activity in hot-spring deposits are their characteristic macro-and microtextures and laser micro-Raman identified carbon. Studies of Phanerozoic geothermal deposits with mineralized microbial components are relevant analogs for Precambrian geobiology because early life is commonly preserved as microbial microfossils and biofilms in silica, some of it hydrothermal in origin. Yet the diagenetic "movie" has already been run. Hence, studying younger sinters of a range of ages provides an opportunity to "play it again" and follow the varied influences on biosignatures into the deep-time geological record.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Mary Ann Liebert  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Diagenesis  
dc.subject
Fossilization. Astrobiology 15  
dc.subject
Hot Springs  
dc.subject
Microbial Mats  
dc.subject
Silica  
dc.subject.classification
Paleontología  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-07-31T17:19:18Z  
dc.journal.volume
15  
dc.journal.number
10  
dc.journal.pagination
858-882  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Campbell, Kathleen. The University of Auckland; Nueva Zelanda  
dc.description.fil
Fil: Lynne, Bridget Y.. The University of Auckland; Nueva Zelanda  
dc.description.fil
Fil: Handley, Kim M.. The University of Auckland; Nueva Zelanda. University of Chicago; Estados Unidos  
dc.description.fil
Fil: Jordan, Sacha. The University of Auckland; Nueva Zelanda  
dc.description.fil
Fil: Farmer, Jack D.. Arizona State University; Estados Unidos  
dc.description.fil
Fil: Guido, Diego Martin. Universidad Nacional de la Plata. Facultad de Ciencias Naturales y Museo. Instituto de Recursos Minerales. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Recursos Minerales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Foucher, Frédéric. Centre National de la Recherche Scientifique; Francia  
dc.description.fil
Fil: Turner, Susan. BioConsortia; Estados Unidos  
dc.description.fil
Fil: Perry, Randall S.. Imperial College London; Reino Unido  
dc.journal.title
Astrobiology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1089/ast.2015.1307  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.liebertpub.com/doi/10.1089/ast.2015.1307