Artículo
Compatible operations on commutative weak residuated lattices
Fecha de publicación:
04/2015
Editorial:
Springer
Revista:
Algebra Universalis
ISSN:
0002-5240
e-ISSN:
1420-8911
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Compatibility of functions is a classical topic in Universal Algebra related to the notion of affine completeness. In algebraic logic, it is concerned with the possibility of implicitly defining new connectives. In this paper, we give characterizations of compatible operations in a variety of algebras that properly includes commutative residuated lattices and some generalizations of Heyting algebras. The wider variety considered is obtained by weakening the main characters of residuated lattices (A, ∧, ∨, ·, →, e) but retaining most of their algebraic consequences, and their algebras have a commutative monoidal structure. The order-extension principle a ≤ b if and only if a → b ≥ e is replaced by the condition: if a ≤ b, then a → b ≥ e. The residuation property c ≤ a → b if and only if a · c ≤ b is replaced by the conditions: if c ≤ a → b , then a · c ≤ b, and if a · c ≤ b, then e → c ≤ a → b. Some further algebraic conditions of commutative residuated lattices are required.
Palabras clave:
03g25
,
Primary 06b10
,
Secondary 03g10
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
San Martín, Hernán Javier; Compatible operations on commutative weak residuated lattices
; Springer; Algebra Universalis; 73; 2; 4-2015; 143-155
Compartir
Altmétricas