Artículo
Tropicalization of facets of polytopes
Fecha de publicación:
06/2017
Editorial:
Elsevier Science Inc
Revista:
Linear Algebra and its Applications
ISSN:
0024-3795
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
It is known that any tropical polytope is the image under the valuation map of ordinary polytopes over the Puiseux series field. The latter polytopes are called lifts of the tropical polytope. We prove that any pure tropical polytope is the intersection of the tropical half-spaces given by the images under the valuation map of the facet-defining half-spaces of a certain lift. We construct this lift explicitly, taking into account geometric properties of the given polytope. Moreover, when the generators of the tropical polytope are in general position, we prove that the above property is satisfied for any lift. This solves a conjecture of Develin and Yu.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Allamigeon, Xavier; Katz, Ricardo David; Tropicalization of facets of polytopes; Elsevier Science Inc; Linear Algebra and its Applications; 523; 6-2017; 79-101
Compartir
Altmétricas