Artículo
On the dimensions of a family of overlapping self-affine carpets
Fecha de publicación:
12/2016
Editorial:
Cambridge University Press
Revista:
Ergodic Theory And Dynamical Systems
ISSN:
0143-3857
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We consider the dimensions of a family of self-affine sets related to the Bedford-McMullen carpets. In particular, we fix a Bedford-McMullen system and then randomise the translation vectors with the stipulation that the column structure is preserved. As such, we maintain one of the key features in the Bedford-McMullen set up in that alignment causes the dimensions to drop from the affinity dimension. We compute the Hausdorff, packing and box dimensions outside of a small set of exceptional translations, and also for some explicit translations even in the presence of overlapping. Our results rely on, and can be seen as a partial extension of, M. Hochman´s recent work on the dimensions of self-similar sets and measures.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Fraser, Jonathan; Shmerkin, Pablo Sebastian; On the dimensions of a family of overlapping self-affine carpets; Cambridge University Press; Ergodic Theory And Dynamical Systems; 36; 8; 12-2016; 2463-2481
Compartir