Artículo
Mok's characteristic varieties and the normal holonomy group
Fecha de publicación:
02/2017
Editorial:
Academic Press Inc Elsevier Science
Revista:
Advances in Mathematics
ISSN:
0001-8708
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we complete the study of the normal holonomy groups of complex submanifolds (non nec. complete) of Cn or CPn. We show that irreducible but non-transitive normal holonomies are exactly the Hermitian s-representations of [4, Table 1] (see Corollary 1.1). For each one of them we construct a non necessarily complete complex submanifold whose normal holonomy is the prescribed s-representation. We also show that if the submanifold has irreducible non-transitive normal holonomy then it is an open subset of the smooth part of one of the characteristic varieties studied by N. Mok in his work about rigidity of locally symmetric spaces. Finally, we prove that if the action of the normal holonomy group of a projective submanifold is reducible then the submanifold is an open subset of the smooth part of a so called join, i.e. the union of the lines joining two projective submanifolds.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Di Scala, Antonio J.; Vittone, Francisco; Mok's characteristic varieties and the normal holonomy group; Academic Press Inc Elsevier Science; Advances in Mathematics; 308; 2-2017; 987-1008
Compartir
Altmétricas