Artículo
Visible/near infrared-partial least-squares analysis of Brix in sugar cane juice: A test field for variable selection methods
Sorol, Natalia Raquel; Arancibia, Eleuterio Luis
; Bortolato, Santiago Andres
; Olivieri, Alejandro Cesar
Fecha de publicación:
07/2010
Editorial:
Elsevier Science
Revista:
Chemometrics and Intelligent Laboratory Systems
ISSN:
0169-7439
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Several variable selection algorithms were applied in order to sort informative wavelengths for building a partial least-squares (PLS) model relating visible/near infrared spectra to Brix degrees in samples of sugar cane juice. Two types of selection methods were explored. A first group was based on the PLS regression coefficients, such as the selection of coefficients significantly larger than their uncertainties, the estimation of the variable importance in projection (VIP), and uninformative variable elimination (UVE). The second group involves minimum error searches conducted through interval PLS (i-PLS), variable-size moving-window (VS-MW), genetic algorithms (GA) and particle swarm optimization (PSO). The best results were obtained using the latter two methodologies, both based on applications of natural computation. The results furnished by inspection of the spectrum of regression coefficients may be dangerous, in general, for selecting informative variables. This important fact has been confirmed by analysis of a set of simulated data mimicking the experimental sugar cane juice spectra.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INQUINOA)
Articulos de INST.DE QUIMICA DEL NOROESTE
Articulos de INST.DE QUIMICA DEL NOROESTE
Articulos(IQUIR)
Articulos de INST.DE QUIMICA ROSARIO
Articulos de INST.DE QUIMICA ROSARIO
Citación
Sorol, Natalia Raquel; Arancibia, Eleuterio Luis; Bortolato, Santiago Andres; Olivieri, Alejandro Cesar; Visible/near infrared-partial least-squares analysis of Brix in sugar cane juice: A test field for variable selection methods; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 102; 2; 7-2010; 100-109
Compartir
Altmétricas