Artículo
Determination of One Unknown Thermal Coefficient through the One-Phase Fractional Lamé-Clapeyron-Stefan Problem
Fecha de publicación:
09/2015
Editorial:
Scientific Research Publishing
Revista:
Applied Mathematics
ISSN:
2152-7393
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We obtain explicit expressions for one unknown thermal coefficient (among the conductivity, mass density, specific heat and latent heat of fusion) of a semi-infinite material through the one-phase fractional Lamé-Clapeyron-Stefan problem with an over-specified boundary condition on the fixed face x = 0 . The partial differential equation and one of the conditions on the free boundary include a time Caputo’s fractional derivative of order 0 < α < 1. Moreover, we obtain the necessary and sufficient conditions on data in order to have a unique solution by using recent results obtained for the fractional diffusion equation exploiting the properties of the Wright and Mainardi functions, given in: 1) Roscani-Santillan Marcus, Fract. Calc. Appl. Anal., 16 (2013), 802 - 815; 2) Roscani-Tarzia, Adv. Math. Sci. Appl., 24 (2014), 237 - 249 and 3) Voller, Int. J. Heat Mass Transfer, 74 (2014), 269 - 277. This work generalizes the method developed for the determination of unknown thermal coefficients for the classical Lamé-Clapeyron-Stefan problem given in Tarzia, Adv. Appl. Math., 3 (1982), 74 - 82, which is recovered by taking the limit when the order α → 1− .
Palabras clave:
Unknown Thermal Coefficients
,
Fractional Stefan Problem
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Tarzia, Domingo Alberto; Determination of One Unknown Thermal Coefficient through the One-Phase Fractional Lamé-Clapeyron-Stefan Problem; Scientific Research Publishing; Applied Mathematics; 6; 13; 9-2015; 2182-2191
Compartir
Altmétricas