Artículo
Lift-and-project ranks of the stable set polytope of joined a-perfect graphs
Fecha de publicación:
09/2016
Editorial:
Elsevier Science
Revista:
Discrete Applied Mathematics
ISSN:
0166-218X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we study lift-and-project polyhedral operators defined by Lovász and Schrijver and Balas, Ceria and Cornuéjols on the clique relaxation of the stable set polytope of webs. We compute the disjunctive rank of all webs and consequently of antiwebs. We also obtain the disjunctive rank of the antiweb constraints for which the complexity of the separation problem is still unknown. Finally, we use our results to provide bounds of the disjunctive rank of larger classes of graphs as joined a-perfect graphs, where near-bipartite graphs belong to.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Bianchi, S; Escalante, Mariana Silvina; Montelar, María Susana; Lift-and-project ranks of the stable set polytope of joined a-perfect graphs; Elsevier Science; Discrete Applied Mathematics; 210; 9-2016; 176-184
Compartir
Altmétricas