Artículo
Deep learning for plant identification using vein morphological patterns
Fecha de publicación:
09/2016
Editorial:
Elsevier
Revista:
Computers and Eletronics in Agriculture
ISSN:
0168-1699
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We propose using a deep convolutional neural network (CNN) for the problem of plant identification from leaf vein patterns. In particular, we consider classifying three different legume species: white bean, red bean and soybean. The introduction of a CNN avoids the use of handcrafted feature extractors as it is standard in state of the art pipeline. Furthermore, this deep learning approach significantly improves the accuracy of the referred pipeline. We also show that the reported accuracy is reached by increasing the model depth. Finally, by analyzing the resulting models with a simple visualization technique, we are able to unveil relevant vein patterns.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Grinblat, Guillermo Luis; Uzal, Lucas César; Larese, Monica Graciela; Granitto, Pablo Miguel; Deep learning for plant identification using vein morphological patterns; Elsevier; Computers and Eletronics in Agriculture; 127; 9-2016; 418-424
Compartir
Altmétricas