Mostrar el registro sencillo del ítem
dc.contributor.author
Baya, Ariel Emilio
dc.contributor.author
Larese, Monica Graciela
dc.contributor.author
Granitto, Pablo Miguel
dc.date.available
2018-07-19T17:36:34Z
dc.date.issued
2016-06
dc.identifier.citation
Baya, Ariel Emilio; Larese, Monica Graciela; Granitto, Pablo Miguel; Clustering using PK-D: A connectivity and density dissimilarity; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 51; 6-2016; 151-160
dc.identifier.issn
0957-4174
dc.identifier.uri
http://hdl.handle.net/11336/52658
dc.description.abstract
We present a new dissimilarity, which combines connectivity and density information. Usually, connectivity and density are conceived as mutually exclusive concepts; however, we discuss a novel procedure to merge both information sources. Once we have calculated the new dissimilarity, we apply MDS in order to find a low dimensional vector space representation. The new data representation can be used for clustering and data visualization, which is not pursued in this paper. Instead we use clustering to estimate the gain from our approach consisting of dissimilarity + MDS. Hence, we analyze the partitions' quality obtained by clustering high dimensional data with various well known clustering algorithms based on density, connectivity and message passing, as well as simple algorithms like k-means and Hierarchical Clustering (HC). The quality gap between the partitions found by k-means and HC alone compared to k-means and HC using our new low dimensional vector space representation is remarkable. Moreover, our tests using high dimensional gene expression and image data confirm these results and show a steady performance, which surpasses spectral clustering and other algorithms relevant to our work.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Clustering
dc.subject
Dimensionality Reduction
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Clustering using PK-D: A connectivity and density dissimilarity
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-07-18T20:43:59Z
dc.journal.volume
51
dc.journal.pagination
151-160
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Elmsford
dc.description.fil
Fil: Baya, Ariel Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.description.fil
Fil: Larese, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.description.fil
Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.journal.title
Expert Systems with Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.eswa.2015.12.037
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417415008453
Archivos asociados