Mostrar el registro sencillo del ítem

dc.contributor.author
Baya, Ariel Emilio  
dc.contributor.author
Larese, Monica Graciela  
dc.contributor.author
Granitto, Pablo Miguel  
dc.date.available
2018-07-19T17:36:34Z  
dc.date.issued
2016-06  
dc.identifier.citation
Baya, Ariel Emilio; Larese, Monica Graciela; Granitto, Pablo Miguel; Clustering using PK-D: A connectivity and density dissimilarity; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 51; 6-2016; 151-160  
dc.identifier.issn
0957-4174  
dc.identifier.uri
http://hdl.handle.net/11336/52658  
dc.description.abstract
We present a new dissimilarity, which combines connectivity and density information. Usually, connectivity and density are conceived as mutually exclusive concepts; however, we discuss a novel procedure to merge both information sources. Once we have calculated the new dissimilarity, we apply MDS in order to find a low dimensional vector space representation. The new data representation can be used for clustering and data visualization, which is not pursued in this paper. Instead we use clustering to estimate the gain from our approach consisting of dissimilarity + MDS. Hence, we analyze the partitions' quality obtained by clustering high dimensional data with various well known clustering algorithms based on density, connectivity and message passing, as well as simple algorithms like k-means and Hierarchical Clustering (HC). The quality gap between the partitions found by k-means and HC alone compared to k-means and HC using our new low dimensional vector space representation is remarkable. Moreover, our tests using high dimensional gene expression and image data confirm these results and show a steady performance, which surpasses spectral clustering and other algorithms relevant to our work.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Clustering  
dc.subject
Dimensionality Reduction  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Clustering using PK-D: A connectivity and density dissimilarity  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-07-18T20:43:59Z  
dc.journal.volume
51  
dc.journal.pagination
151-160  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Elmsford  
dc.description.fil
Fil: Baya, Ariel Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.description.fil
Fil: Larese, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.description.fil
Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.journal.title
Expert Systems with Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.eswa.2015.12.037  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417415008453