Mostrar el registro sencillo del ítem
dc.contributor.author
del Barco, Viviana Jorgelina
dc.date.available
2018-07-18T22:21:13Z
dc.date.issued
2016-04
dc.identifier.citation
del Barco, Viviana Jorgelina; Homogeneous geodesics in pseudo-Riemannian nilmanifolds; De Gruyter; Advances In Geometry; 16; 2; 4-2016; 1-18
dc.identifier.issn
1615-715X
dc.identifier.uri
http://hdl.handle.net/11336/52639
dc.description.abstract
We study the geodesic orbit property for nilpotent Lie groups N when endowed with a pseudo-Riemannian left-invariant metric. We consider this property with respect to different groups acting by isometries. When N acts on itself by left-translations we show that it is a geodesic orbit space if and only if the metric is bi-invariant. Assuming N is 2-step nilpotent and with non-degenerate center we give algebraic conditions on the Lie algebra n of N in order to verify that every geodesic is the orbit of a one-parameter subgroup of N ⋊ Auto(N). In addition we present an example of an almost g.o. space such that for null homogeneous geodesics, the natural parameter of the orbit is not always the affine parameter of the geodesic.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
De Gruyter
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Homogeneous Pseudo-Riemannian Spaces
dc.subject
Homogeneous Geodesics
dc.subject
Pseudo-Riemannian Nilpotent Lie Groups
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Homogeneous geodesics in pseudo-Riemannian nilmanifolds
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-07-18T20:40:59Z
dc.identifier.eissn
1615-7168
dc.journal.volume
16
dc.journal.number
2
dc.journal.pagination
1-18
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: del Barco, Viviana Jorgelina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
dc.journal.title
Advances In Geometry
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/advg.2016.16.issue-2/advgeom-2016-0007/advgeom-2016-0007.xml
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/ 10.1515/advgeom-2016-0007
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1403.5939
Archivos asociados