Mostrar el registro sencillo del ítem

dc.contributor.author
Dianda, Daniela Fernanda  
dc.contributor.author
Quaglino, Marta Beatriz  
dc.contributor.author
Pagura, José Alberto  
dc.date.available
2018-07-17T19:38:28Z  
dc.date.issued
2016-11  
dc.identifier.citation
Dianda, Daniela Fernanda; Quaglino, Marta Beatriz; Pagura, José Alberto; Performance of Multivariate Process Capability Indices Under Normal and Non-Normal Distributions; John Wiley & Sons Ltd; Quality And Reliability Engineering International; 32; 7; 11-2016; 2345-2366  
dc.identifier.issn
0748-8017  
dc.identifier.uri
http://hdl.handle.net/11336/52495  
dc.description.abstract
In the context of process capability analysis, the results of most processes are dominated by two or even more quality characteristics, so that the assessment of process capability requires that all of them are considered simultaneously. In recent years, many researchers have developed different alternatives of multivariate capability indices using different approaches of construction. In this paper, four of them are compared through the study of their ability to correctly distinguish capable processes from incapable processes under a diversity of simulated scenarios, defining suitable minimum desirable values that allow to decide whether the process meets or does not meet specifications. In this sense, properties analyzed can be seen as sensitivity and specificity, assuming that a measure is sensitive if it can detect the lack of capability when it actually exists and specific if it correctly identifies capable processes. Two indices based on ratios of regions and two based on the principal component analysis have been selected for the study. The scenarios take into account several joint distributions for the quality variables, normal and non-normal, several numbers of variables, and different levels of correlation between them, covering a wide range of possible situations. The results showed that one of the indices has better properties across most scenarios, leading to right conclusions about the state of capability of processes and making it a recommendable option for its use in real-world practice. Copyright © 2015 John Wiley & Sons, Ltd.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
John Wiley & Sons Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Multivariate Capability Indices  
dc.subject
Normal And Non-Normal Distributions  
dc.subject
Performance Evaluation  
dc.subject.classification
Otras Ingeniería Química  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Performance of Multivariate Process Capability Indices Under Normal and Non-Normal Distributions  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-07-17T13:55:31Z  
dc.journal.volume
32  
dc.journal.number
7  
dc.journal.pagination
2345-2366  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Dianda, Daniela Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Cs.económicas y Estadística. Escuela de Estadística. Instituto de Inv.teóricas y Aplicadas; Argentina  
dc.description.fil
Fil: Quaglino, Marta Beatriz. Universidad Nacional de Rosario. Facultad de Cs.económicas y Estadística. Escuela de Estadística. Instituto de Inv.teóricas y Aplicadas; Argentina  
dc.description.fil
Fil: Pagura, José Alberto. Universidad Nacional de Rosario. Facultad de Cs.económicas y Estadística. Escuela de Estadística. Instituto de Inv.teóricas y Aplicadas; Argentina  
dc.journal.title
Quality And Reliability Engineering International  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1002/qre.1939  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/qre.1939