Artículo
A spectral envelope approach towards effective SVM-RFE on infrared data
Spetale, Flavio Ezequiel
; Bulacio, Pilar Estela; Guillaume, Serge; Murillo, Javier
; Tapia, Elizabeth
Fecha de publicación:
02/2016
Editorial:
Elsevier Science
Revista:
Pattern Recognition Letters
ISSN:
0167-8655
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Infrared spectroscopy data is characterized by the presence of a huge number of variables. Applications of infrared spectroscopy in the mid-infrared (MIR) and near-infrared (NIR) bands are of widespread use in many fields. To effectively handle this type of data, suitable dimensionality reduction methods are required. In this paper, a dimensionality reduction method designed to enable effective Support Vector Machine Recursive Feature Elimination (SVM-RFE) on NIR/MIR datasets is presented. The method exploits the information content at peaks of the spectral envelope functions which characterize NIR/MIR spectra datasets. Experimental evaluation across different NIR/MIR application domains shows that the proposed method is useful for the induction of compact and accurate SVM classifiers for qualitative NIR/MIR applications involving stringent interpretability or time processing requirements.
Palabras clave:
Dimensionality Reduction
,
Infrared Spectroscopy
,
Spectral Envelope
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Spetale, Flavio Ezequiel; Bulacio, Pilar Estela; Guillaume, Serge; Murillo, Javier; Tapia, Elizabeth; A spectral envelope approach towards effective SVM-RFE on infrared data; Elsevier Science; Pattern Recognition Letters; 71; 2-2016; 59-65
Compartir
Altmétricas