Artículo
Evaluation of microstructure anisotropy on room and medium temperature ECAP deformed F138 steel
de Vincentis, Natalia Soledad
; Kliauga, A.; Ferrante, M.; Avalos, Martina Cecilia
; Brokmeier, H. G.; Bolmaro, Raul Eduardo
Fecha de publicación:
07/2015
Editorial:
Elsevier Science Inc
Revista:
Materials Characterization
ISSN:
1044-5803
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Abstract The microstructure developed during severe plastic deformation results in improved mechanical properties because of the decrease in domain sizes and accumulation of defects, mainly dislocation arrays. The characteristic deformation stages observed in low stacking fault energy (SFE) face centered cubic (FCC) materials are highly influenced by the development of the primary and secondary twinning that compete with dislocation glide. In this paper, a low SFE F138 stainless steel is deformed by equal channel angular pressing (ECAP) up to 4 passes at room temperature (RT) and at 300°C to compare the grain refinement and twin boundary development with increasing deformation. Tensile tests were performed to determine the deformation stages reached by the material before and after ECAP deformation, and the resulting microstructure was observed by TEM. X-ray diffraction and EBSD, average technique the first and local the second one, were used to quantify the microstructural changes, allowing the determination of diffraction domain sizes, dislocation and stacking fault densities and misorientation indices, which lead to a complete analysis of the deformation introduced in the material, with comparative correlations between various microstructural parameters.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFIR)
Articulos de INST.DE FISICA DE ROSARIO (I)
Articulos de INST.DE FISICA DE ROSARIO (I)
Citación
de Vincentis, Natalia Soledad; Kliauga, A.; Ferrante, M.; Avalos, Martina Cecilia; Brokmeier, H. G.; et al.; Evaluation of microstructure anisotropy on room and medium temperature ECAP deformed F138 steel; Elsevier Science Inc; Materials Characterization; 107; 7-2015; 98-111
Compartir
Altmétricas