Mostrar el registro sencillo del ítem

dc.contributor.author
Catala, Angel  
dc.date.available
2016-04-15T16:12:39Z  
dc.date.issued
2012-01  
dc.identifier.citation
Catala, Angel; Lipid peroxidation modifies the picture of membranes from the “Fluid Mosaic Model” to the “Lipid Whisker Model”; Elsevier Masson; Biochimie; 94; 1; 1-2012; 101-109  
dc.identifier.issn
0300-9084  
dc.identifier.uri
http://hdl.handle.net/11336/5229  
dc.description.abstract
The “Fluid Mosaic Model”, described by Singer and Nicolson, explain both how a cell membrane preserves a critical barrier function while it concomitantly facilitates rapid lateral diffusion of proteins and lipids within the planar membrane surface. However, the lipid components of biological plasma membranes are not regularly distributed. They are thought to contain “rafts” e nano-domains enriched in sphingolipids and cholesterol that are distinct from surrounding membranes of unsaturated phospholipids. Cholesterol and fatty acids adjust the transport and diffusion of molecular oxygen in membranes. The presence of cholesterol and saturated phospholipids decreases oxygen permeability across the membrane. Alpha-tocopherol, the main antioxidant in biological membranes, partition into domains that are enriched in polyunsaturated phospholipids increasing the concentration of the vitamin in the place where it is most required. On the basis of these observations, it is possible to assume that non-raft domains enriched in phospholipids containing PUFAs and vitamin E will be more accessible by molecular oxygen than lipid raft domains enriched in sphingolipids and cholesterol. This situation will render some nano-domains more sensitive to lipid peroxidation than others. Phospholipid oxidation products are very likely to alter the properties of biological membranes, because their polarity and shape may differ considerably from the structures of their parent molecules. Addition of a polar oxygen atom to several peroxidized fatty acids reorients the acyl chain whereby it no longer remains buried within the membrane interior, but rather projects into the aqueous environment “Lipid Whisker Model”. This exceptional conformational change facilitates direct physical access of the oxidized fatty acid moiety to cell surface scavenger receptors.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Masson  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Lipid Peroxidation  
dc.subject
Fluid Mosaic Model  
dc.subject
Lipid Rafts  
dc.subject
Lipid Whisker Model  
dc.subject.classification
Bioquímica y Biología Molecular  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Lipid peroxidation modifies the picture of membranes from the “Fluid Mosaic Model” to the “Lipid Whisker Model”  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-05-06 15:52:43.262787-03  
dc.journal.volume
94  
dc.journal.number
1  
dc.journal.pagination
101-109  
dc.journal.pais
Francia  
dc.journal.ciudad
Paris  
dc.description.fil
Fil: Catala, Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina  
dc.journal.title
Biochimie  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/pmid/21983178  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.biochi.2011.09.025  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.biochi.2011.09.025  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0300908411003762