Mostrar el registro sencillo del ítem

dc.contributor.author
Fogarty, T.  
dc.contributor.author
Cormick, Maria Cecilia  
dc.contributor.author
Landa, H.  
dc.contributor.author
Stojanovic, Vladimir M.  
dc.contributor.author
Demler, E.  
dc.contributor.author
Morigi, Giovanna  
dc.date.available
2018-07-16T18:40:59Z  
dc.date.issued
2015-12-01  
dc.identifier.citation
Fogarty, T.; Cormick, Maria Cecilia; Landa, H.; Stojanovic, Vladimir M.; Demler, E.; et al.; Nanofriction in Cavity Quantum Electrodynamics; American Physical Society; Physical Review Letters; 115; 23; 1-12-2015; 233602-233602  
dc.identifier.issn
0031-9007  
dc.identifier.uri
http://hdl.handle.net/11336/52249  
dc.description.abstract
The dynamics of cold trapped ions in a high-finesse resonator results from the interplay between the long-range Coulomb repulsion and the cavity-induced interactions. The latter are due to multiple scatterings of laser photons inside the cavity and become relevant when the laser pump is sufficiently strong to overcome photon decay. We study the stationary states of ions coupled with a mode of a standing-wave cavity as a function of the cavity and laser parameters, when the typical length scales of the two self-organizing processes, Coulomb crystallization and photon-mediated interactions, are incommensurate. The dynamics are frustrated and in specific limiting cases can be cast in terms of the Frenkel-Kontorova model, which reproduces features of friction in one dimension. We numerically recover the sliding and pinned phases. For strong cavity nonlinearities, they are in general separated by bistable regions where superlubric and stick-slip dynamics coexist. The cavity, moreover, acts as a thermal reservoir and can cool the chain vibrations to temperatures controlled by the cavity parameters and by the ions' phase. These features are imprinted in the radiation emitted by the cavity, which is readily measurable in state-of-the-art setups of cavity quantum electrodynamics.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Physical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Trapped Ions  
dc.subject
Optical Resonators  
dc.subject
Friction Models  
dc.subject
Long-Range Interactions  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Nanofriction in Cavity Quantum Electrodynamics  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-07-03T21:55:15Z  
dc.identifier.eissn
1079-7114  
dc.journal.volume
115  
dc.journal.number
23  
dc.journal.pagination
233602-233602  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Fogarty, T.. Universitat Saarland; Alemania  
dc.description.fil
Fil: Cormick, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina  
dc.description.fil
Fil: Landa, H.. Université Paris Sud; Francia  
dc.description.fil
Fil: Stojanovic, Vladimir M.. Harvard University; Estados Unidos  
dc.description.fil
Fil: Demler, E.. Harvard University; Estados Unidos  
dc.description.fil
Fil: Morigi, Giovanna. Universitat Saarland; Alemania  
dc.journal.title
Physical Review Letters  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.233602  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://doi.org/10.1103/PhysRevLett.115.233602