Artículo
On the Chern-Ricci flow and its solitons for Lie groups
Fecha de publicación:
09/2015
Editorial:
Wiley VCH Verlag
Revista:
Mathematische Nachrichten
ISSN:
0025-584X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper is concerned with Chern-Ricci flow evolution of left-invariant hermitian structures on Lie groups. We study the behavior of a solution, as t is approaching the first time singularity, by rescaling in order to prevent collapsing and obtain convergence in the pointed (or Cheeger-Gromov) sense to a Chern-Ricci soliton. We give some results on the Chern-Ricci form and the Lie group structure of the pointed limit in terms of the starting hermitian metric and, as an application, we obtain a complete picture for the class of solvable Lie groups having a codimension one normal abelian subgroup. We have also found a Chern-Ricci soliton hermitian metric on most of the complex surfaces which are solvmanifolds, including an unexpected shrinking soliton example.
Palabras clave:
Chern-Ricci
,
Flow
,
Lie Groups
,
Solitons
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Lauret, Jorge Ruben; Rodriguez Valencia, Edwin Alejandro; On the Chern-Ricci flow and its solitons for Lie groups; Wiley VCH Verlag; Mathematische Nachrichten; 288; 13; 9-2015; 1512-1526
Compartir
Altmétricas