Artículo
Mining Gene Regulatory Networks by Neural Modeling of Expression Time-Series
Fecha de publicación:
11/2015
Editorial:
IEEE Computer Society
Revista:
Ieee-acm Transactions On Computational Biology And Bioinformatics
ISSN:
1545-5963
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Discovering gene regulatory networks from data is one of the most studied topics in recent years. Neural networks can be successfully used to infer an underlying gene network by modeling expression profiles as times series. This work proposes a novel method based on a pool of neural networks for obtaining a gene regulatory network from a gene expression dataset. They are used for modeling each possible interaction between pairs of genes in the dataset, and a set of mining rules is applied to accurately detect the subjacent relations among genes. The results obtained on artificial and real datasets confirm the method effectiveness for discovering regulatory networks from a proper modeling of the temporal dynamics of gene expression profiles.
Palabras clave:
Gene Profiles
,
Gene Regulatory Networks
,
Neural Networks
,
Times Series Data
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Rubiolo, Mariano; Milone, Diego Humberto; Stegmayer, Georgina; Mining Gene Regulatory Networks by Neural Modeling of Expression Time-Series; IEEE Computer Society; Ieee-acm Transactions On Computational Biology And Bioinformatics; 12; 6; 11-2015; 1365-1373
Compartir
Altmétricas