Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Normal holonomy of orbits and Veronese submanifolds

Olmos, Carlos EnriqueIcon ; Riaño Riaño, Richar FernandoIcon
Fecha de publicación: 06/2015
Editorial: Math Soc Japan
Revista: Journal Of The Mathematical Society Of Japan
ISSN: 0025-5645
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

It was conjectured, twenty years ago, the following result that would generalize the so-called rank rigidity theorem for homogeneous Euclidean submanifolds: let Mn, n≥2, be a full and irreducible homogeneous submanifold of the sphere SN-1⊂ ℝ N such that the normal holonomy group is not transitive (on the unit sphere of the normal space to the sphere). Then Mn must be an orbit of an irreducible s-representation (i.e. the isotropy representation of a semisimple Riemannian symmetric space). If n = 2, then the normal holonomy is always transitive, unless M is a homogeneous isoparametric hypersurface of the sphere (and so the conjecture is true in this case). We prove the conjecture when n = 3. In this case M3 must be either isoparametric or a Veronese submanifold. The proof combines geometric arguments with (delicate) topological arguments that use information from two different fibrations with the same total space (the holonomy tube and the caustic fibrations). We also prove the conjecture for n ≥3 when the normal holonomy acts irreducibly and the codimension is the maximal possible n(n+1)=2. This gives a characterization of Veronese submanifolds in terms of normal holonomy. We also extend this last result by replacing the homogeneity assumption by the assumption of minimality (in the sphere). Another result of the paper, used for the case n = 3, is that the number of irreducible factors of the local normal holonomy group, for any Euclidean submanifold Mn, is less or equal than [n=2] (which is the rank of the orthogonal group SO(n)). This bound is sharp and improves the known bound n(n-1)/2.
Palabras clave: Normal Holonomy , Orbits of S-Representations , Veronese Submanifolds
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 378.0Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/51759
URL: https://projecteuclid.org/euclid.jmsj/1438777435
DOI: http://dx.doi.org/10.2969/jmsj/06730903
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Olmos, Carlos Enrique; Riaño Riaño, Richar Fernando; Normal holonomy of orbits and Veronese submanifolds; Math Soc Japan; Journal Of The Mathematical Society Of Japan; 67; 3; 6-2015; 903-942
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES