Artículo
Characterization of 9-dimensional Anosov Lie Algebras
Fecha de publicación:
09/2015
Editorial:
Heldermann Verlag
Revista:
Journal Of Lie Theory
ISSN:
0949-5932
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The classification of all real and rational Anosov Lie algebras up to dimension 8 is given by Lauret and Will. In this paper we study 9 -dimensional Anosov Lie algebras by using the properties of very special algebraic numbers and Lie algebra classification tools. We prove that there exists a unique, up to isomorphism, complex 3 -step Anosov Lie algebra of dimension 9. In the 2 -step case, we prove that a 2 -step 9 -dimensional Anosov Lie algebra with no abelian factor must have a 3 -dimensional derived algebra and we characterize these Lie algebras in terms of their Pfaffian forms. Among these Lie algebras, we exhibit a family of infinitely many complex non-isomorphic Anosov Lie algebras.
Palabras clave:
Anosov
,
Diffeomorphism
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Mainkar, Meera; Will, Cynthia Eugenia; Characterization of 9-dimensional Anosov Lie Algebras; Heldermann Verlag; Journal Of Lie Theory; 25; 3; 9-2015; 857-873
Compartir