Artículo
Global smooth geodesic foliations of the hyperbolic space
Fecha de publicación:
10/2015
Editorial:
Springer
Revista:
Mathematische Zeitschrift
ISSN:
0025-5874
e-ISSN:
1432-1823
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We consider foliations of the whole three dimensional hyperbolic space H3 by oriented geodesics. Let L be the space of all the oriented geodesics of H3, which is a four dimensional manifold carrying two canonical pseudo-Riemannian metrics of signature (2,2). We characterize, in terms of these geometries of L, the subsets M in L that determine foliations of H3. We describe in a similar way some distinguished types of geodesic foliations of H3, regarding to which extent they are in some sense trivial in some directions: On the one hand, foliations whose leaves do not lie in a totally geodesic surface, not even at the infinitesimal level. On the other hand, those for which the forward and backward Gauss maps (Formula presented.) are local diffeomorphisms. Besides, we prove that for this kind of foliations, φ± are global diffeomorphisms onto their images. The subject of this article is within the framework of foliations by congruent submanifolds, and follows the spirit of the paper by Gluck and Warner where they understand the infinite dimensional manifold of all the great circle foliations of the three sphere.
Palabras clave:
Geodesic Foliation
,
Hyperbolic Space
,
Space of Oriented Lines
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Godoy, Yamile Alejandra; Salvai, Marcos Luis; Global smooth geodesic foliations of the hyperbolic space; Springer; Mathematische Zeitschrift; 281; 1-2; 10-2015; 43-54
Compartir
Altmétricas