Artículo
Liver glycerol permeability and Aquaporin-9 are dysregulated in a murine model of Non-Alcoholic Fatty Liver Disease
Gena, Patrizia; Mastrodonato, María; Portincasa, Piero; Fanelli, Elena; Mentino, Donatella; Rodríguez, Amaia; Marinelli, Raul Alberto
; Brenner, Catherine; Frühbeck, Gema; Svelto, María; Calamita, Giuseppe
Fecha de publicación:
10/2013
Editorial:
Public Library Science
Revista:
Plos One
ISSN:
1932-6203
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
One form of liver steatosis, namely Non-Alcoholic Fatty Liver Disease (NAFLD), is a worrisome health problem worldwide<br />characterized by intrahepatic triacylglycerol (TG) overaccumulation. NAFLD is a common feature of metabolic syndrome<br />being often associated with obesity, dyslipidemia and diabetes and mostly closely linked to insulin resistance. The<br />mechanism of NAFLD pathogenesis is object of intense investigation especially regarding complex systems ultimately<br />resulting in excessive TG deposition in hepatocytes. However, scarce is the attention about the relevance of hepatic import<br />of glycerol, the other primary source (as glycerol-3-phosphate) of increased TG in hepatocytes. Obese leptin-deficient (ob/<br />ob) mice, an animal model of NAFLD, were used to evaluate the functional involvement of Aquaporin-9 (AQP9), the major<br />pathway of liver glycerol entry, in hepatosteatosis. By RT-PCR and qPCR, the level of Aqp9 mRNA in the liver of starved obese<br />mice was comparable with the corresponding control lean littermates. By immunoblotting, the AQP9 protein at the<br />hepatocyte sinusoidal plasma membrane of obese mice was markedly lower (33%) than lean mice, a finding fully confirmed<br />by immunohistochemistry. By stopped-flow light scattering, the liver glycerol permeability of ob/ob mice was significantly<br />lower (53%) than lean mice, a finding consistent with both the observed down-regulation of AQP9 protein and increased<br />level of plasma glycerol characterizing obese mice. In summary, our results suggest implication of AQP9 in liver steatosis.<br />The reduction of hepatocyte AQP9 and, consequently, glycerol permeability might be a defensive mechanism to counteract<br />further fat infiltration in liver parenchyma.
Palabras clave:
Aquaporin-9
,
Glycerol
,
Nafld
,
Liver
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFISE)
Articulos de INST.DE FISIOLOGIA EXPERIMENTAL (I)
Articulos de INST.DE FISIOLOGIA EXPERIMENTAL (I)
Citación
Gena, Patrizia; Mastrodonato, María; Portincasa, Piero; Fanelli, Elena; Mentino, Donatella; Rodríguez, Amaia; Marinelli, Raul Alberto; Brenner, Catherine; Frühbeck, Gema; Svelto, María; Calamita, Giuseppe; Liver glycerol permeability and Aquaporin-9 are dysregulated in a murine model of Non-Alcoholic Fatty Liver Disease; Public Library Science; Plos One; 8; 10; 10-2013; 1-8;
Compartir
Altmétricas