Artículo
Soliton Almost Kähler Structures on 6-Dimensional Nilmanifolds for the Symplectic Curvature Flow
Fecha de publicación:
10/2015
Editorial:
Springer
Revista:
The Journal Of Geometric Analysis
ISSN:
1050-6926
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The aim of this paper is to study self-similar solutions to the symplectic curvature flow on 6-dimensional nilmanifolds. For this purpose, we focus our attention on the family of symplectic two- and three-step nilpotent Lie algebras admitting a minimal compatible metric and give a complete classification of these algebras together with their respective metric. Such a classification is given by using our generalization of Nikolayevsky’s nice basis criterion, which, for the convenience of the reader, will be repeated here in the context of canonical compatible metrics for geometric structures on nilmanifolds. By computing the Chern–Ricci operator (Formula presented.) in each case, we show that the above distinguished metrics define a soliton almost Kähler structure. Many illustrative examples are carefully developed.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Fernández Culma, Edison Alberto; Soliton Almost Kähler Structures on 6-Dimensional Nilmanifolds for the Symplectic Curvature Flow; Springer; The Journal Of Geometric Analysis; 25; 4; 10-2015; 2736-2758
Compartir
Altmétricas