Mostrar el registro sencillo del ítem
dc.contributor.author
Shakarian, Paulo
dc.contributor.author
Simari, Gerardo
dc.contributor.author
Moores, Geoffrey
dc.contributor.author
Paulo, Damon
dc.contributor.author
Parsons, Simon
dc.contributor.author
Falappa, Marcelo Alejandro
dc.contributor.author
Aleali, Ashkan
dc.date.available
2018-07-05T16:49:26Z
dc.date.issued
2016-12
dc.identifier.citation
Shakarian, Paulo; Simari, Gerardo; Moores, Geoffrey; Paulo, Damon; Parsons, Simon; et al.; Belief revision in structured probabilistic argumentation: Model and application to cyber security; Springer; Annals of Mathematics and Artificial Intelligence; 78; 3-4; 12-2016; 259-301
dc.identifier.issn
1012-2443
dc.identifier.uri
http://hdl.handle.net/11336/51361
dc.description.abstract
In real-world applications, knowledge bases consisting of all the available information for a specific domain, along with the current state of affairs, will typically contain contradictory data, coming from different sources, as well as data with varying degrees of uncertainty attached. An important aspect of the effort associated with maintaining such knowledge bases is deciding what information is no longer useful; pieces of information may be outdated; may come from sources that have recently been discovered to be of low quality; or abundant evidence may be available that contradicts them. In this paper, we propose a probabilistic structured argumentation framework that arises from the extension of Presumptive Defeasible Logic Programming (PreDeLP) with probabilistic models, and argue that this formalism is capable of addressing these basic issues. The formalism is capable of handling contradictory and uncertain data, and we study non-prioritized belief revision over probabilistic PreDeLP programs that can help with knowledge-base maintenance. For belief revision, we propose a set of rationality postulates — based on well-known ones developed for classical knowledge bases — that characterize how these belief revision operations should behave, and study classes of operators along with theoretical relationships with the proposed postulates, including representation theorems stating the equivalence between classes of operators and their associated postulates. We then demonstrate how our framework can be used to address the attribution problem in cyber security/cyber warfare.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Argumentation
dc.subject
Belief Revision
dc.subject
Cyber Security
dc.subject
Probabilistic Reasoning
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Belief revision in structured probabilistic argumentation: Model and application to cyber security
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-06-28T13:52:20Z
dc.journal.volume
78
dc.journal.number
3-4
dc.journal.pagination
259-301
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: Shakarian, Paulo. Arizona State University; Estados Unidos
dc.description.fil
Fil: Simari, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
dc.description.fil
Fil: Moores, Geoffrey. U.S. Military Academy; Estados Unidos
dc.description.fil
Fil: Paulo, Damon. U.S. Military Academy; Estados Unidos
dc.description.fil
Fil: Parsons, Simon. University of Liverpool; Reino Unido
dc.description.fil
Fil: Falappa, Marcelo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
dc.description.fil
Fil: Aleali, Ashkan. Arizona State University; Estados Unidos
dc.journal.title
Annals of Mathematics and Artificial Intelligence
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1007/s10472-015-9483-5
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10472-015-9483-5
Archivos asociados