Mostrar el registro sencillo del ítem

dc.contributor.author
Longo, Gabriel Sebastian  
dc.contributor.author
Olvera de la Cruz, Monica  
dc.contributor.author
Szleifer, Igal  
dc.date.available
2016-04-11T20:31:47Z  
dc.date.issued
2014-12  
dc.identifier.citation
Longo, Gabriel Sebastian; Olvera de la Cruz, Monica; Szleifer, Igal; Equilibrium Adsorption of Hexahistidine on pH-Responsive Hydrogel Nanofilms; American Chemical Society; Langmuir; 30; 50; 12-2014; 15335-15344  
dc.identifier.issn
0743-7463  
dc.identifier.uri
http://hdl.handle.net/11336/5131  
dc.description.abstract
We present a molecular theory to study the adsorption of different species within pH-sensitive hydrogel nanofilms. The theoretical framework allows for a molecular-level description of all the components of the system, and it explicitly accounts for the acid-base equilibrium. We concentrate in the adsorption of hexahistidine, one of the most widely used tags in bio-related systems, particularly in chromatography of proteins. The adsorption of hexahistidine within a grafted polyacid hydrogel film shows a non-monotonic dependence on the solution pH. Depending on the salt concentration, the density of the polymer network, and the bulk concentration of peptide, substantial adsorption is predicted in the intermediate pH range where both the network and the amino acids are charged. To enhance the electrostatic attractions, the acid-base equilibrium of adsorbed hexahistidine is shifted significantly increasing the degree of charge of the residues, as compared to the bulk solution. Such shift depends critically on the conditions of the environment at the nanoscale. At the same time, the degree of dissociation of the network becomes that of the isolated acid-group in a dilute solution, which means that the network is considerably more charged than when there is no adsorbate molecules. This work provides fundamental information on the physical chemistry behind the adsorption behavior and the response of the hydrogel film. This information can be useful in designing new materials for the purification or separation/immobilization of histidine-tagged proteins.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Ph-Responsive Hydrogels  
dc.subject
His-Tag  
dc.subject
Adsorption Thermodynamics  
dc.subject
Immobilized Metal Ion Affinity Chromatography  
dc.subject
Molecular Modeling  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Equilibrium Adsorption of Hexahistidine on pH-Responsive Hydrogel Nanofilms  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-05-06 15:52:43.262787-03  
dc.journal.volume
30  
dc.journal.number
50  
dc.journal.pagination
15335-15344  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington  
dc.description.fil
Fil: Longo, Gabriel Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina  
dc.description.fil
Fil: Olvera de la Cruz, Monica. Northwestern University; Estados Unidos  
dc.description.fil
Fil: Szleifer, Igal. Northwestern University; Estados Unidos  
dc.journal.title
Langmuir  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/la5040382  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/la5040382  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/10.1021/la5040382