Artículo
The area-angular momentum inequality for black holes in cosmological spacetimes
Fecha de publicación:
07/2015
Editorial:
IOP Publishing
Revista:
Classical and Quantum Gravity
ISSN:
0264-9381
e-ISSN:
1361-6382
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
For a stable, marginally outer trapped surface (MOTS) in an axially symmetric spacetime with cosmological constant λ > 0 and with matter satisfying the dominant energy condition, we prove that the area A and the angular momentum J satisfy the inequality 8π|J| ≤ A√(1 - λA/4π)(1 - λA/12π), which is saturated precisely for the extreme Kerr-de Sitter family of metrics. This result entails a universal upper bound |J| ≤ Jmax ≈ 0.17/λ for such MOTS, which is saturated for one particular extreme configuration. Our result sharpens the inequality 8π |J| ≤ A (Dain and Reiris 2011 Phys. Rev. Lett. 107 051101, Jaramillo, Reiris and Dain 2011 Phys. Rev. Lett. D 84 121503), and we follow the overall strategy of its proof in the sense that we first estimate the area from below in terms of the energy corresponding to a 'mass functional', which is basically a suitably regularized harmonic map S2 → H2. However, in the cosmological case this mass functional acquires an additional potential term which itself depends on the area. To estimate the corresponding energy in terms of the angular momentum and the cosmological constant we use a subtle scaling argument, a generalized 'Carter-identity', and various techniques from variational calculus, including the mountain pass theorem.
Palabras clave:
Apparent Horizon
,
Area Inequality
,
Cosmological Constant
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFEG)
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Citación
Gabach Clement, Maria Eugenia; Reiris, Martín; Simon, Walter; The area-angular momentum inequality for black holes in cosmological spacetimes; IOP Publishing; Classical and Quantum Gravity; 32; 14; 7-2015
Compartir
Altmétricas