Artículo
Nonlinear electrodynamics as a symmetric hyperbolic system
Fecha de publicación:
10/2015
Editorial:
American Physical Society
Revista:
Physical Review D: Particles, Fields, Gravitation and Cosmology
ISSN:
1550-7998
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Nonlinear theories generalizing Maxwell's electromagnetism and arising from a Lagrangian formalism have dispersion relations in which propagation planes factor into null planes corresponding to two effective metrics which depend on the pointwise values of the electromagnetic field. These effective Lorentzian metrics share the null (generically two) directions of the electromagnetic field. We show that the theory is symmetric hyperbolic if and only if the cones these metrics give rise to have a nonempty intersection, namely, that there exist families of symmetrizers in the sense of Geroch [26] which are positive definite for all covectors in the interior of the cones intersection. Thus, for these theories, the initial value problem is well posed. We illustrate the power of this approach with several nonlinear models of physical interest such as Born-Infeld, Gauss-Bonnet, and Euler-Heisenberg.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFEG)
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Citación
Abalos, Julio Fernando; Carrasco, Federico León; Goulart, Érico; Reula, Oscar Alejandro; Nonlinear electrodynamics as a symmetric hyperbolic system; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 92; 8; 10-2015; 1-19
Compartir
Altmétricas