Artículo
Post-translational protein arginylation in the normal nervous system and in neurodegeneration
Fecha de publicación:
08/2016
Editorial:
Wiley Blackwell Publishing, Inc
Revista:
Journal of Neurochemistry
ISSN:
0022-3042
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Post-translational arginylation of proteins is an important regulator of many physiological pathways in cells. This modification was originally noted in protein degradation during neurodegenerative processes, with an apparently different physiological relevance between central and peripheral nervous system. Subsequent studies have identified a steadily increasing number of proteins and proteolysis-derived polypeptides as arginyltransferase (ATE1) substrates, including β-amyloid, α-synuclein, and TDP43 proteolytic fragments. Arginylation is involved in signaling processes of proteins and polypeptides that are further ubiquitinated and degraded by the proteasome. In addition, it is also implicated in autophagy/lysosomal degradation pathway. Recent studies using mutant mouse strains deficient in ATE1 indicate additional roles of this modification in neuronal physiology. As ATE1 is capable of modifying proteins either at the N-terminus or middle-chain acidic residues, determining which proteins function are modulated by arginylation represents a big challenge. Here, we review studies addressing various roles of ATE1 activity in nervous system function, and suggest future research directions that will clarify the role of post-translational protein arginylation in brain development and various neurological disorders. (Figure presented.) Arginyltransferase (ATE1), the enzyme responsible for post-translational arginylation, modulates the functions of a wide variety of proteins and polypeptides, and is also involved in the main degradation pathways of intracellular proteins. Regulatory roles of ATE1 have been well defined for certain organs. However, its roles in nervous system development and neurodegenerative processes remain largely unknown, and present exciting opportunities for future research, as discussed in this review.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIQUIBIC)
Articulos de CENTRO DE INVEST.EN QCA.BIOL.DE CORDOBA (P)
Articulos de CENTRO DE INVEST.EN QCA.BIOL.DE CORDOBA (P)
Citación
Galiano, Mauricio Raul; Goitea, Victor Enrique; Hallak, Marta Elena; Post-translational protein arginylation in the normal nervous system and in neurodegeneration; Wiley Blackwell Publishing, Inc; Journal of Neurochemistry; 138; 4; 8-2016; 506-517
Compartir
Altmétricas