Mostrar el registro sencillo del ítem

dc.contributor.author
Alvarez, Nicolás Alejandro  
dc.contributor.author
Becher, Veronica Andrea  
dc.contributor.author
Ferrari, Pablo Augusto  
dc.contributor.author
Yuhjtman, Sergio Andrés  
dc.date.available
2018-06-29T19:50:30Z  
dc.date.issued
2016-09  
dc.identifier.citation
Alvarez, Nicolás Alejandro; Becher, Veronica Andrea; Ferrari, Pablo Augusto; Yuhjtman, Sergio Andrés; Perfect necklaces; Academic Press Inc Elsevier Science; Advances In Applied Mathematics; 80; 9-2016; 48-61  
dc.identifier.issn
0196-8858  
dc.identifier.uri
http://hdl.handle.net/11336/50806  
dc.description.abstract
We introduce a variant of de Bruijn words that we call perfect necklaces. Fix a finite alphabet. Recall that a word is a finite sequence of symbols in the alphabet and a circular word, or necklace, is the equivalence class of a word under rotations. For positive integers k and n, we call a necklace (k,n)-perfect if each word of length k occurs exactly n times at positions which are different modulo n for any convention on the starting point. We call a necklace perfect if it is (k,k)-perfect for some k. We prove that every arithmetic sequence with difference coprime with the alphabet size induces a perfect necklace. In particular, the concatenation of all words of the same length in lexicographic order yields a perfect necklace. For each k and n, we give a closed formula for the number of (k,n)-perfect necklaces. Finally, we prove that every infinite periodic sequence whose period coincides with some (k,n)-perfect necklace for some k and some n, passes all statistical tests of size up to k, but not all larger tests. This last theorem motivated this work.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Inc Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Combinatorics on Words  
dc.subject
De Bruijn Words  
dc.subject
Necklaces  
dc.subject
Statistical Tests of Finite Size  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Perfect necklaces  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-06-28T13:53:23Z  
dc.journal.volume
80  
dc.journal.pagination
48-61  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Alvarez, Nicolás Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur; Argentina  
dc.description.fil
Fil: Becher, Veronica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina  
dc.description.fil
Fil: Ferrari, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina  
dc.description.fil
Fil: Yuhjtman, Sergio Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina  
dc.journal.title
Advances In Applied Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0196885816300343  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.aam.2016.05.002