Mostrar el registro sencillo del ítem
dc.contributor.author
Comellas, Ester
dc.contributor.author
Bellomo, Facundo Javier
dc.contributor.author
Oller Martinez, Sergio Horacio
dc.date.available
2018-06-29T18:38:00Z
dc.date.issued
2016-03
dc.identifier.citation
Comellas, Ester; Bellomo, Facundo Javier; Oller Martinez, Sergio Horacio; A generalized finite-strain damage model for quasi‐incompressible hyperelasticity using hybrid formulation
; John Wiley & Sons Ltd; International Journal for Numerical Methods in Engineering; 105; 10; 3-2016; 781-800
dc.identifier.issn
0029-5981
dc.identifier.uri
http://hdl.handle.net/11336/50755
dc.description.abstract
A new generalized damage model for quasi-incompressible hyperelasticity in a total Lagrangian finite-strain framework is presented. A Kachanov-like reduction factor (1 - D) is applied on the deviatoric part of the hyperelastic constitutive model. Linear and exponential softening are defined as damage evolution laws, both describable in terms of only two material parameters. The model is formulated following continuum damage mechanics theory such that it can be particularized for any hyperelastic model based on the volumetric-isochoric split of the Helmholtz free energy. However, in the present work, it has been implemented in an in-house finite element code for neo-Hooke and Ogden hyperelasticity. The details of the hybrid formulation used are also described. A couple of three-dimensional examples are presented to illustrate the main characteristics of the damage model. The results obtained reproduce a wide range of softening behaviors, highlighting the versatility of the formulation proposed. The damage formulation has been developed to be used in conjunction with mixing theory in order to model the behavior of fibered biological tissues. As an example, the markedly different behaviors of the fundamental components of the rectus sheath were reproduced using the damage model, obtaining excellent correlation with the experimental results from literature.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
John Wiley & Sons Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Biomechanics
dc.subject
Constitutive Equations
dc.subject
Damage
dc.subject
Finite Element Methods
dc.subject
Solids
dc.subject.classification
Ingeniería Médica
dc.subject.classification
Ingeniería Médica
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
A generalized finite-strain damage model for quasi‐incompressible hyperelasticity using hybrid formulation
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-06-29T13:05:28Z
dc.journal.volume
105
dc.journal.number
10
dc.journal.pagination
781-800
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Comellas, Ester. Universidad Politécnica de Catalunya; España
dc.description.fil
Fil: Bellomo, Facundo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; Argentina
dc.description.fil
Fil: Oller Martinez, Sergio Horacio. Universidad Politécnica de Catalunya; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
International Journal for Numerical Methods in Engineering
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/nme.5118
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5118
Archivos asociados