Mostrar el registro sencillo del ítem
dc.contributor.author
Fernández, Pablo S.
dc.contributor.author
Gomes, Janaina F.
dc.contributor.author
Angelucci, Camilo A.
dc.contributor.author
Tereshchuk, Polina
dc.contributor.author
Martins, Cauê A.
dc.contributor.author
Camara, Giuseppe A.
dc.contributor.author
Martins, María Elisa
dc.contributor.author
Da Silva, Juarez L. F.
dc.contributor.author
Tremiliosi Filho, Germano
dc.date.available
2016-04-07T19:47:50Z
dc.date.issued
2015-05
dc.identifier.citation
Fernández, Pablo S.; Gomes, Janaina F.; Angelucci, Camilo A.; Tereshchuk, Polina; Martins, Cauê A.; et al.; Establishing a link between well-ordered Pt(100) surfaces and real systems: How random superficial defects influence the electrooxidation of glycerol?; American Chemical Society; ACS Catalysis; 5; 7; 5-2015; 4227-4236
dc.identifier.issn
2155-5435
dc.identifier.uri
http://hdl.handle.net/11336/5073
dc.description.abstract
Glycerol (GlOH) accumulation and its very low price constitute a real problem for the biodiesel industry. To overcome these problems, it is imperative to find new GlOH applications. In this context,electrochemistry arises as an important alternativeto the production of energy or fine chemicals using GlOH as a reactant. To make these opportunities a reality, it is fundamentallynecessary to understand how the glycerol electro-oxidation reaction (GEOR) occurs on catalysts used in real systems.Thus, research using model surfaces generates the first insight into the electrochemistry of extremely complex real catalysts. Accordingly,in this work, we generate Pt(100) disturbed surfaces in a reproducible manner, carefully controlling the surface defectdensity. Then, GEOR is studied on well-ordered Pt(100) and on the disturbed Pt(100) surfaces in 0.5 M H2SO4 using cyclic voltammetry(CV) and in-situ Fourier transform infrared spectroscopy (FTIR). The CV profile of GEOR consists of a single peak in thepositive scan. The onset reaction displays the influence of defects present on the surface. On a surface with a high degree of disorder,the main GlOH oxidation process begins at 0.8 V vs. RHE, whereas for well-ordered Pt(100), it starts 0.1 V earlier. FTIR experimentsshow the presence of carbon monoxide and carbonyl absorption bands. The electrochemical and spectroelectrochemical results are supported by computational calculations (DFT) showing that both CO and GlOH bind more strongly on disturbed than well-ordered surfaces. Thus, our experiments show that Pt-CO (or other GlOH residue) bond breaking may be the GEOR rate determining step.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society
dc.rights
info:eu-repo/semantics/embargoedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Glycerol Electro-Oxidation Reaction
dc.subject
Platinum Single Crystals
dc.subject
Disordered Surfaces
dc.subject
In Situ Ftir
dc.subject
Density Functional Theory.
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Establishing a link between well-ordered Pt(100) surfaces and real systems: How random superficial defects influence the electrooxidation of glycerol?
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2016-05-06 15:52:43.262787-03
dc.journal.volume
5
dc.journal.number
7
dc.journal.pagination
4227-4236
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Washington
dc.conicet.avisoEditorial
This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Catalysis, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/acscatal.5b00451, see http://pubs.acs.org/page/policy/articlesonrequest/index.html].
dc.description.fil
Fil: Fernández, Pablo S.. Universidade de Sao Paulo. Instituto Química de Sao Carlos; Brasil
dc.description.fil
Fil: Gomes, Janaina F.. Universidade de Sao Paulo. Instituto Química de Sao Carlos; Brasil
dc.description.fil
Fil: Angelucci, Camilo A.. Universidade Federal do ABC. Centro de Ciências Naturais e Humanas; Brasil
dc.description.fil
Fil: Tereshchuk, Polina. Universidade de Sao Paulo. Instituto Química de Sao Carlos; Brasil
dc.description.fil
Fil: Martins, Cauê A.. Universidade Federal da Grandes Dourados; Brasil
dc.description.fil
Fil: Camara, Giuseppe A.. Universidade Federal Do Mato Grosso Do Sul; Brasil
dc.description.fil
Fil: Martins, María Elisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de la Plata; Argentina
dc.description.fil
Fil: Da Silva, Juarez L. F.. Universidade de Sao Paulo. Instituto Química de Sao Carlos; Brasil
dc.description.fil
Fil: Tremiliosi Filho, Germano. Universidade de Sao Paulo. Instituto Química de Sao Carlos; Brasil
dc.journal.title
ACS Catalysis
dc.rights.embargoDate
2016-06-04
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/10.1021/acscatal.5b00451
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/acscatal.5b00451
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acscatal.5b00451
Archivos asociados