Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Bayesian approach to the inverse problem in a light scattering application

Otero, Fernando AgustínIcon ; Barreto Orlande, Helcio R.; Frontini, Gloria LiaIcon ; Elicabe, Guillermo EnriqueIcon
Fecha de publicación: 25/11/2014
Editorial: Routledge Journals, Taylor & Francis Ltd
Revista: Journal of Applied Statistics
ISSN: 0266-4763
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Estadística y Probabilidad

Resumen

In this article, static light scattering (SLS) measurements are processed to estimate the particle size distribution of particle systems incorporating prior information obtained from an alternative experimental technique: scanning electron microscopy (SEM). For this purpose we propose two Bayesian schemes (one parametric and another non-parametric) to solve the stated light scattering problem and take advantage of the obtained results to summarize some features of the Bayesian approach within the context of inverse problems. The features presented in this article include the improvement of the results when some useful prior information from an alternative experiment is considered instead of a non-informative prior as it occurs in a deterministic maximum likelihood estimation. This improvement will be shown in terms of accuracy and precision in the corresponding results and also in terms of minimizing the effect of multiple minima by including significant information in the optimization. Both Bayesian schemes are implemented using Markov Chain Monte Carlo methods. They have been developed on the basis of the Metropolis–Hastings (MH) algorithm using Matlab® and are tested with the analysis of simulated and experimental examples of concentrated and semi-concentrated particles. In the simulated examples, SLS measurements were generated using a rigorous model, while the inversion stage was solved using an approximate model in both schemes and also using the rigorous model in the parametric scheme. Priors from SEM micrographs were also simulated and experimented, where the simulated ones were obtained using a Monte Carlo routine. In addition to the presentation of these features of the Bayesian approach, some other topics will be discussed, such as regularization and some implementation issues of the proposed schemes, among which we remark the selection of the parameters used in the MH algorithm.
Palabras clave: Bayesian Estimation , Particle Size Distribution , Inverse Problem , Metropolis-Hastings , Static Light Scattering
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.245Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/5055
DOI: http://dx.doi.org/ 10.1080/02664763.2014.993370
URL: http://www.tandfonline.com/doi/abs/10.1080/02664763.2014.993370http://www.tandfo
DOI: http://dx.doi.org/10.1080/02664763.2014.993370
DOI: http://www.tandfonline.com/doi/abs/10.1080/02664763.2014.993370
Colecciones
Articulos(CCT - MAR DEL PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MAR DEL PLATA
Articulos(INTEMA)
Articulos de INST.DE INV.EN CIENCIA Y TECNOL.MATERIALES (I)
Citación
Otero, Fernando Agustín; Barreto Orlande, Helcio R.; Frontini, Gloria Lia; Elicabe, Guillermo Enrique; Bayesian approach to the inverse problem in a light scattering application; Routledge Journals, Taylor & Francis Ltd; Journal of Applied Statistics; 42; 5; 25-11-2014; 994-1016
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES