Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

SIR model on a dynamical network and the endemic state of an infectious disease

Dottori, Martin; Fabricius, GabrielIcon
Fecha de publicación: 18/04/2015
Editorial: Elsevier
Revista: Physica A: Statistical Mechanics and its Applications
ISSN: 0378-4371
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física Atómica, Molecular y Química

Resumen

In this work we performed a numerical study of an epidemic model that mimics the endemic state of whooping cough in the pre-vaccine era. We considered a stochastic SIR model on dynamical networks that involve local and global contacts among individuals and analysed the influence of the network properties on the characterization of the quasi-stationary state. We computed probability density functions (PDF) for infected fraction of individuals and found that they are well fitted by gamma functions, excepted the tails of the distributions that are q-exponentials. We also computed the fluctuation power spectra of infective time series for different networks. We found that network effects can be partially absorbed by rescaling the rate of infective contacts of the model. An explicit relation between the effective transmission rate of the disease and the correlation of susceptible individuals with their infective nearest neighbours was obtained. This relation quantifies >the known screening of infective individuals observed in these networks. We finally discuss the goodness and limitations of the SIR model with homogeneous mixing and parameters taken from epidemiological data to describe the dynamic behaviour observed in the networks studied.
Palabras clave: Sir , Network , Stochastic , Pertussis
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 345.4Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/embargoedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/5045
DOI: http://dx.doi.org/ 10.1016/j.physa.2015.04.007
URL: http://arxiv.org/abs/1410.1383
URL: http://www.sciencedirect.com/science/article/pii/S0378437115003660
DOI: http://dx.doi.org/10.1016/j.physa.2015.04.007
Colecciones
Articulos(INIFTA)
Articulos de INST.DE INV.FISICOQUIMICAS TEORICAS Y APLIC.
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Dottori, Martin; Fabricius, Gabriel; SIR model on a dynamical network and the endemic state of an infectious disease; Elsevier; Physica A: Statistical Mechanics and its Applications; 434; 18-4-2015; 25-35
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES