Mostrar el registro sencillo del ítem

dc.contributor.author
Granato, Daniel  
dc.contributor.author
Santos, Jânio S.  
dc.contributor.author
Escher, Graziela B.  
dc.contributor.author
Ferreira, Bruno L.  
dc.contributor.author
Maggio, Ruben Mariano  
dc.date.available
2018-06-28T17:58:04Z  
dc.date.issued
2018-02  
dc.identifier.citation
Granato, Daniel; Santos, Jânio S.; Escher, Graziela B.; Ferreira, Bruno L.; Maggio, Ruben Mariano; Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective; Elsevier Science London; Trends In Food Science & Technology (regular Ed.); 72; 2-2018; 83-90  
dc.identifier.issn
0924-2244  
dc.identifier.uri
http://hdl.handle.net/11336/50431  
dc.description.abstract
Background The development of statistical software has enabled food scientists to perform a wide variety of mathematical/statistical analyses and solve problems. Therefore, not only sophisticated analytical methods but also the application of multivariate statistical methods have increased considerably. Herein, principal component analysis (PCA) and hierarchical cluster analysis (HCA) are the most widely used tools to explore similarities and hidden patterns among samples where relationship on data and grouping are until unclear. Usually, larger chemical data sets, bioactive compounds and functional properties are the target of these methodologies. Scope and approach In this article, we criticize these methods when correlation analysis should be calculated and results analyzed. Key findings and conclusions The use of PCA and HCA in food chemistry studies has increased because the results are easy to interpret and discuss. However, their indiscriminate use to assess the association between bioactive compounds and in vitro functional properties is criticized as they provide a qualitative view of the data. When appropriate, one should bear in mind that the correlation between the content of chemical compounds and bioactivity could be duly discussed using correlation coefficients.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science London  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Bioactive Compounds  
dc.subject
Chemometrics  
dc.subject
Cluster Analysis  
dc.subject
Correlation Analysis  
dc.subject
Functional Properties  
dc.subject
Principal Component Analysis  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-06-28T14:13:50Z  
dc.journal.volume
72  
dc.journal.pagination
83-90  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Granato, Daniel. State University of Ponta Grossa; Brasil  
dc.description.fil
Fil: Santos, Jânio S.. State University of Ponta Grossa; Brasil  
dc.description.fil
Fil: Escher, Graziela B.. State University of Ponta Grossa; Brasil  
dc.description.fil
Fil: Ferreira, Bruno L.. Universidade Federal de Santa Catarina; Brasil  
dc.description.fil
Fil: Maggio, Ruben Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina  
dc.journal.title
Trends In Food Science & Technology (regular Ed.)  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.tifs.2017.12.006  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0924224417306362