Artículo
Multivariable control structure design based on mixed-integer quadratic programming
Braccia, Lautaro
; Marchetti, Pablo Andres
; Luppi, Patricio Alfredo
; Zumoffen, David Alejandro Ramon
Fecha de publicación:
09/2017
Editorial:
American Chemical Society
Revista:
Industrial & Engineering Chemical Research
ISSN:
0888-5885
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work a new approach to address multivariable control structure (MCS) design for medium/large-scale processes is proposed. The classical MCS design methodologies rely on superstructure representations which define sequential and/or bilevel mixed-integer nonlinear programming (MINLP) problems. The main drawbacks of this kind of approach are the complexity of the required solution methods (stochastic/deterministic global search), the computational time, and the optimality of the solution when simplifications are made. Instead, this work shows that, by using the sum of squared deviations (SSD) as well as the net load evaluation (NLE) concepts, the control structure design problem can be formulated as a mixed-integer quadratic programming (MIQP) model with linear constraints, featuring both optimality and improved computational performance due to state-of-the-art solvers. The formulation is implemented in the GAMS environment using CPLEX as the selected solver and two typical case studies are presented to show the benefits of the proposed approach.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Articulos(INTEC)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Citación
Braccia, Lautaro; Marchetti, Pablo Andres; Luppi, Patricio Alfredo; Zumoffen, David Alejandro Ramon; Multivariable control structure design based on mixed-integer quadratic programming; American Chemical Society; Industrial & Engineering Chemical Research; 56; 39; 9-2017; 11228-11244
Compartir
Altmétricas