Artículo
Notions of computation as monoids
Fecha de publicación:
10/2017
Editorial:
Cambridge University Press
Revista:
Journal Of Functional Programming
ISSN:
0956-7968
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
There are different notions of computation, the most popular being monads, applicative functors, and arrows. In this article, we show that these three notions can be seen as instances of a unifying abstract concept: monoids in monoidal categories. We demonstrate that even when working at this high level of generality, one can obtain useful results. In particular, we give conditions under which one can obtain free monoids and Cayley representations at the level of monoidal categories, and we show that their concretisation results in useful constructions for monads, applicative functors, and arrows. Moreover, by taking advantage of the uniform presentation of the three notions of computation, we introduce a principled approach to the analysis of the relation between them.
Palabras clave:
Monoidal Categories
,
Monad
,
Applicative Functor
,
Arrow
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Rivas Gadda, Exequiel Matías; Jaskelioff, Mauro Javier; Notions of computation as monoids; Cambridge University Press; Journal Of Functional Programming; 27; 10-2017
Compartir
Altmétricas