Mostrar el registro sencillo del ítem

dc.contributor.author
Errico, Leonardo Antonio  
dc.contributor.author
Lejaeghere, Kurt  
dc.contributor.author
Runco, Jorge Marcelo  
dc.contributor.author
Mishra, S.N.  
dc.contributor.author
Rentería, Mario  
dc.contributor.author
Cottenier, Stefaan  
dc.date.available
2018-06-27T00:59:05Z  
dc.date.issued
2016-10  
dc.identifier.citation
Errico, Leonardo Antonio; Lejaeghere, Kurt; Runco, Jorge Marcelo; Mishra, S.N.; Rentería, Mario; et al.; Precision of Electric-Field Gradient Predictions by Density Functional Theory and Implications for the Nuclear Quadrupole Moment and Its Error Bar of the 111Cd 245 keV 5/2+ Level; American Chemical Society; Journal of Physical Chemistry C; 120; 40; 10-2016; 23111-23120  
dc.identifier.issn
1932-7447  
dc.identifier.uri
http://hdl.handle.net/11336/50235  
dc.description.abstract
We present ab initio calculated electric-field gradient tensors at Cd sites in a set of simple yet diverse noncubic metals. By combining these predictions with carefully selected published experimental data, the nuclear quadrupole moment of the 245 keV 5/2+ level of 111Cd is determined to be 0.76(2) b. Knowing this quadrupole moment is important for time-differential perturbed angular correlation spectroscopy: decades of experimentally obtained nuclear quadrupole coupling constants for solids can now be more reliably converted into electronic structure information. For nuclear physics systematics, this is a rare opportunity to have reliable quadrupole moment information for a short-lived level that is not accessible to regular experimental methods. Much effort is spent on the determination of a meaningful error bar, which is an aspect that gained only recently more attention in the context of density functional theory predictions. This required assessing the numerical uncertainty in density functional theory predictions for electric-field gradient tensors in solids. In contrast to quantum chemistry methods, these density functional theory predictions cannot detect systematic errors. By comparing our quadrupole moment value with an independent value obtained from quantum chemistry calculations and experiment, we show that systematic errors are small for the systems studied here. Yet, there are indications that density functional theory underestimates by a few percent the electric-field gradient, and therefore overestimates the quadrupole moment by the same amount. We point out which future work needs to be done to characterize the possible deviations inherent to density functional theory.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
111cd  
dc.subject
Quadrupole Moment  
dc.subject
Ab Initio  
dc.subject
Error Bar  
dc.subject
Precision  
dc.subject
Dft  
dc.subject
Apw  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Precision of Electric-Field Gradient Predictions by Density Functional Theory and Implications for the Nuclear Quadrupole Moment and Its Error Bar of the 111Cd 245 keV 5/2+ Level  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-06-25T01:03:24Z  
dc.journal.volume
120  
dc.journal.number
40  
dc.journal.pagination
23111-23120  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington  
dc.description.fil
Fil: Errico, Leonardo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; Argentina  
dc.description.fil
Fil: Lejaeghere, Kurt. University of Ghent; Bélgica  
dc.description.fil
Fil: Runco, Jorge Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina  
dc.description.fil
Fil: Mishra, S.N.. Tata Institute of Fundamental Research; India  
dc.description.fil
Fil: Rentería, Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina  
dc.description.fil
Fil: Cottenier, Stefaan. University of Ghent; Bélgica  
dc.journal.title
Journal of Physical Chemistry C  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.jpcc.6b06127  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpcc.6b06127