Artículo
On first integrals of the geodesic flow on Heisenberg nilmanifolds
Fecha de publicación:
12/2016
Editorial:
Elsevier Science
Revista:
Differential Geometry and its Applications
ISSN:
0926-2245
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we study the geodesic flow on nilmanifolds equipped with a left-invariant metric. We write the underlying definitions and find general formulas for the Poisson involution. As an application we develop the Heisenberg Lie group equipped with its canonical metric. We prove that a family of first integrals giving the complete integrability can be read off at the Lie algebra of the isometry group. We also explain the complete integrability for any invariant metric and on compact quotients.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Kocsard, Alejandro; Ovando, Gabriela Paola; Reggiani, Silvio Nicolás; On first integrals of the geodesic flow on Heisenberg nilmanifolds; Elsevier Science; Differential Geometry and its Applications; 49; 12-2016; 496-509
Compartir
Altmétricas