Artículo
A Quantum-inspired Version of the Classification Problem
Fecha de publicación:
12/2017
Editorial:
Springer/Plenum Publishers
Revista:
International Journal of Theoretical Physics
ISSN:
0020-7748
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We address the problem of binary classification by using a quantum version of the Nearest Mean Classifier (NMC). Our proposal is indeed an advanced version of previous one (see Sergioli et al. 2017 that i) is able to be naturally generalized to arbitrary number of features and ii) exhibits better performances with respect to the classical NMC for several datasets. Further, we show that the quantum version of NMC is not invariant under rescaling. This allows us to introduce a free parameter, i.e. the rescaling factor, that could be useful to get a further improvement of the classification performance.
Palabras clave:
Density Operators
,
Nearest Mean Classifier
,
Rescaling Invariance
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Articulos de INST.DE FISICA LA PLATA
Citación
Sergioli, Giuseppe; Bosyk, Gustavo Martin; Santucci, Enrica; Giuntini, Roberto; A Quantum-inspired Version of the Classification Problem; Springer/Plenum Publishers; International Journal of Theoretical Physics; 56; 12; 12-2017; 3880-3888
Compartir
Altmétricas