Mostrar el registro sencillo del ítem

dc.contributor.author
Uriu, Koichiro  
dc.contributor.author
Bhavna, Rajasekaran  
dc.contributor.author
Oates, Andrew C.  
dc.contributor.author
Morelli, Luis Guillermo  
dc.date.available
2018-06-22T21:26:25Z  
dc.date.issued
2017-08  
dc.identifier.citation
Uriu, Koichiro; Bhavna, Rajasekaran; Oates, Andrew C.; Morelli, Luis Guillermo; A framework for quantification and physical modeling of cell mixing applied to oscillator synchronization in vertebrate somitogenesis; Company of Biologists; Biology Open; 6; 8; 8-2017; 1235-1244  
dc.identifier.issn
2046-6390  
dc.identifier.uri
http://hdl.handle.net/11336/49814  
dc.description.abstract
In development and disease, cells move as they exchange signals. One example is found in vertebrate development, during which the timing of segment formation is set by a ‘segmentation clock’, in which oscillating gene expression is synchronized across a population of cells by Delta-Notch signaling. Delta-Notch signaling requires local cell-cell contact, but in the zebrafish embryonic tailbud, oscillating cells move rapidly, exchanging neighbors. Previous theoretical studies proposed that this relative movement or cell mixing might alter signaling and thereby enhance synchronization. However, it remains unclear whether the mixing timescale in the tissue is in the right range for this effect, because a framework to reliably measure the mixing timescale and compare it with signaling timescale is lacking. Here, we develop such a framework using a quantitative description of cell mixing without the need for an external reference frame and constructing a physical model of cell movement based on the data. Numerical simulations show that mixing with experimentally observed statistics enhances synchronization of coupled phase oscillators, suggesting that mixing in the tailbud is fast enough to affect the coherence of rhythmic gene expression. Our approach will find general application in analyzing the relative movements of communicating cells during development and disease.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Company of Biologists  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Cell Mixing  
dc.subject
Coupled Oscillators  
dc.subject
Imaging Synchronization  
dc.subject
Somitogenesis  
dc.subject
Zebrafish  
dc.subject.classification
Otras Ciencias Biológicas  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A framework for quantification and physical modeling of cell mixing applied to oscillator synchronization in vertebrate somitogenesis  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-06-19T15:55:39Z  
dc.journal.volume
6  
dc.journal.number
8  
dc.journal.pagination
1235-1244  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Cambridge  
dc.description.fil
Fil: Uriu, Koichiro. Kanazawa University; Japón  
dc.description.fil
Fil: Bhavna, Rajasekaran. Max Planck Institute of Molecular Cell Biology and Genetics; Alemania. Max Planck Institute for the Physics of Complex Systems; Alemania  
dc.description.fil
Fil: Oates, Andrew C.. Francis Crick Institute; Reino Unido. University College London; Reino Unido  
dc.description.fil
Fil: Morelli, Luis Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; Argentina. Max Planck Institute for Molecular Physiology; Alemania. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina  
dc.journal.title
Biology Open  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://bio.biologists.org/content/6/8/1235  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1242/bio.025148