Mostrar el registro sencillo del ítem
dc.contributor.author
Jespersen, Martin Closter
dc.contributor.author
Peters, Bjoern
dc.contributor.author
Nielsen, Morten
dc.contributor.author
Marcatili, Paolo
dc.date.available
2018-06-21T12:43:56Z
dc.date.issued
2017-07
dc.identifier.citation
Jespersen, Martin Closter; Peters, Bjoern; Nielsen, Morten; Marcatili, Paolo; BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes; Oxford University Press; Nucleic Acids Research; 45; W1; 7-2017; W24-W29
dc.identifier.issn
0305-1048
dc.identifier.uri
http://hdl.handle.net/11336/49512
dc.description.abstract
Antibodies have become an indispensable tool for many biotechnological and clinical applications. They bind their molecular target (antigen) by recognizing a portion of its structure (epitope) in a highly specific manner. The ability to predict epitopes from antigen sequences alone is a complex task. Despite substantial effort, limited advancement has been achieved over the last decade in the accuracy of epitope prediction methods, especially for those that rely on the sequence of the antigen only. Here, we present BepiPred-2.0 (http://www.cbs.dtu.dk/services/BepiPred/), a web server for predicting B-cell epitopes from antigen sequences. BepiPred-2.0 is based on a random forest algorithm trained on epitopes annotated from antibody-antigen protein structures. This new method was found to outperform other available tools for sequence-based epitope prediction both on epitope data derived from solved 3D structures, and on a large collection of linear epitopes downloaded from the IEDB database. The method displays results in a user-friendly and informative way, both for computer-savvy and non-expert users. We believe that BepiPred-2.0 will be a valuable tool for the bioinformatics and immunology community.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Oxford University Press
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
B Cell
dc.subject
Epitopo
dc.subject
Prediction
dc.subject.classification
Salud Ocupacional
dc.subject.classification
Ciencias de la Salud
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD
dc.title
BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-06-19T17:04:37Z
dc.identifier.eissn
1362-4962
dc.journal.volume
45
dc.journal.number
W1
dc.journal.pagination
W24-W29
dc.journal.pais
Reino Unido
dc.journal.ciudad
Oxford
dc.description.fil
Fil: Jespersen, Martin Closter. Technical University of Denmark; Dinamarca
dc.description.fil
Fil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados Unidos
dc.description.fil
Fil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas (subsede Chascomús) | Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas (subsede Chascomús); Argentina
dc.description.fil
Fil: Marcatili, Paolo. Technical University of Denmark; Dinamarca
dc.journal.title
Nucleic Acids Research
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1093/nar/gkx346
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/nar/article/45/W1/W24/3787843
Archivos asociados