Mostrar el registro sencillo del ítem

dc.contributor.author
Jespersen, Martin Closter  
dc.contributor.author
Peters, Bjoern  
dc.contributor.author
Nielsen, Morten  
dc.contributor.author
Marcatili, Paolo  
dc.date.available
2018-06-21T12:43:56Z  
dc.date.issued
2017-07  
dc.identifier.citation
Jespersen, Martin Closter; Peters, Bjoern; Nielsen, Morten; Marcatili, Paolo; BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes; Oxford University Press; Nucleic Acids Research; 45; W1; 7-2017; W24-W29  
dc.identifier.issn
0305-1048  
dc.identifier.uri
http://hdl.handle.net/11336/49512  
dc.description.abstract
Antibodies have become an indispensable tool for many biotechnological and clinical applications. They bind their molecular target (antigen) by recognizing a portion of its structure (epitope) in a highly specific manner. The ability to predict epitopes from antigen sequences alone is a complex task. Despite substantial effort, limited advancement has been achieved over the last decade in the accuracy of epitope prediction methods, especially for those that rely on the sequence of the antigen only. Here, we present BepiPred-2.0 (http://www.cbs.dtu.dk/services/BepiPred/), a web server for predicting B-cell epitopes from antigen sequences. BepiPred-2.0 is based on a random forest algorithm trained on epitopes annotated from antibody-antigen protein structures. This new method was found to outperform other available tools for sequence-based epitope prediction both on epitope data derived from solved 3D structures, and on a large collection of linear epitopes downloaded from the IEDB database. The method displays results in a user-friendly and informative way, both for computer-savvy and non-expert users. We believe that BepiPred-2.0 will be a valuable tool for the bioinformatics and immunology community.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Oxford University Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
B Cell  
dc.subject
Epitopo  
dc.subject
Prediction  
dc.subject.classification
Salud Ocupacional  
dc.subject.classification
Ciencias de la Salud  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-06-19T17:04:37Z  
dc.identifier.eissn
1362-4962  
dc.journal.volume
45  
dc.journal.number
W1  
dc.journal.pagination
W24-W29  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Oxford  
dc.description.fil
Fil: Jespersen, Martin Closter. Technical University of Denmark; Dinamarca  
dc.description.fil
Fil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados Unidos  
dc.description.fil
Fil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas (subsede Chascomús) | Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas (subsede Chascomús); Argentina  
dc.description.fil
Fil: Marcatili, Paolo. Technical University of Denmark; Dinamarca  
dc.journal.title
Nucleic Acids Research  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1093/nar/gkx346  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/nar/article/45/W1/W24/3787843