Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A modern approach for epitope prediction: identification of foot-and-mouth disease virus peptides binding bovine leukocyte antigen (BoLA) class I molecules

Pandya, Mital; Rasmussen, Michael; Hansen, Andreas Martin; Nielsen, MortenIcon ; Buus, Søren; Golde, William T.; Barlow, John
Fecha de publicación: 11/2015
Editorial: Springer
Revista: Immunogenetics
ISSN: 0093-7711
e-ISSN: 1432-1211
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Salud

Resumen

Major histocompatibility complex (MHC) class I molecules regulate adaptive immune responses through the presentation of antigenic peptides to CD8+ T cells. Polymorphisms in the peptide binding region of class I molecules determine peptide binding affinity and stability during antigen presentation, and different antigen peptide motifs are associated with specific genetic sequences of class I molecules. Understanding bovine leukocyte antigen (BoLA), peptide-MHC class I binding specificities may facilitate development of vaccines or reagents for quantifying the adaptive immune response to intracellular pathogens, such as foot-and-mouth disease virus (FMDV). Six synthetic BoLA class I (BoLA-I) molecules were produced, and the peptide binding motif was generated for five of the six molecules using a combined approach of positional scanning combinatorial peptide libraries (PSCPLs) and neural network-based predictions (NetMHCpan). The updated NetMHCpan server was used to predict BoLA-I binding peptides within the P1 structural polyprotein sequence of FMDV (strain A24 Cruzeiro) for BoLA-1*01901, BoLA-2*00801, BoLA-2*01201, and BoLA-4*02401. Peptide binding affinity and stability were determined for these BoLA-I molecules using the luminescent oxygen channeling immunoassay (LOCI) and scintillation proximity assay (SPA). The functional diversity of known BoLA alleles was predicted using the MHCcluster tool, and functional predictions for peptide motifs were compared to observed data from this and prior studies. The results of these analyses showed that BoLA alleles cluster into three distinct groups with the potential to define “BoLA supertypes.” This streamlined approach identifies potential T cell epitopes from pathogens, such as FMDV, and provides insight into T cell immunity following infection or vaccination.
Palabras clave: Epitope , Fmdv , Immunoinformatics , Mhc Class I , Motif , Peptide
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.221Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/49409
DOI: http://dx.doi.org/10.1007/s00251-015-0877-7
URL: https://link.springer.com/article/10.1007%2Fs00251-015-0877-7
Colecciones
Articulos(IIB-INTECH)
Articulos de INST.DE INVEST.BIOTECNOLOGICAS - INSTITUTO TECNOLOGICO CHASCOMUS
Citación
Pandya, Mital; Rasmussen, Michael; Hansen, Andreas Martin; Nielsen, Morten; Buus, Søren; et al.; A modern approach for epitope prediction: identification of foot-and-mouth disease virus peptides binding bovine leukocyte antigen (BoLA) class I molecules; Springer; Immunogenetics; 67; 11-12; 11-2015; 691-703
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES