Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Improved pan-specific prediction of MHC class I peptide binding using a novel receptor clustering data partitioning strategy

Mattsson, Andreas Holm; Kringelum, J.V.; Garde, C.; Nielsen, MortenIcon
Fecha de publicación: 12/2016
Editorial: Wiley Blackwell Publishing, Inc
Revista: HLA
ISSN: 2059-2310
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Salud Ocupacional

Resumen

Pan-specific prediction of receptor–ligand interaction is conventionally done using machine-learning methods that integrates information about both receptor and ligand primary sequences. To achieve optimal performance using machine learning, dealing with overfitting and data redundancy is critical. Most often so-called ligand clustering methods have been used to deal with these issues in the context of pan-specific receptor–ligand predictions, and the MHC system the approach has proven highly effective for extrapolating information from a limited set of receptors with well characterized binding motifs, to others with no or very limited experimental characterization. The success of this approach has however proven to depend strongly on the similarity of the query molecule to the molecules with characterized specificity using in the machine-learning process. Here, we outline an alternative strategy with the aim of altering this and construct data sets optimal for training of pan-specific receptor–ligand predictions focusing on receptor similarity rather than ligand similarity. We show that this receptor clustering method consistently in benchmarks covering affinity predictions, MHC ligand and MHC epitope identification perform better than the conventional ligand clustering method on the alleles with remote similarity to the training set.
Palabras clave: Artificial Neural Networks , Clustering , Mhc Binding Specificity , Mhc Class I , Peptide–Mhc Binding , T-Cell Epitope
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 13.67Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/48877
DOI: http://dx.doi.org/10.1111/tan.12911
URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/tan.12911
Colecciones
Articulos(IIB-INTECH)
Articulos de INST.DE INVEST.BIOTECNOLOGICAS - INSTITUTO TECNOLOGICO CHASCOMUS
Citación
Mattsson, Andreas Holm; Kringelum, J.V.; Garde, C.; Nielsen, Morten; Improved pan-specific prediction of MHC class I peptide binding using a novel receptor clustering data partitioning strategy; Wiley Blackwell Publishing, Inc; HLA; 88; 6; 12-2016; 287-292
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES