Mostrar el registro sencillo del ítem

dc.contributor.author
Schama, Renata  
dc.contributor.author
Pedrini, Nicolás  
dc.contributor.author
Juarez, Marta Patricia  
dc.contributor.author
Nelson, David R.  
dc.contributor.author
Torres, André  
dc.contributor.author
Valle, Denise  
dc.contributor.author
Mesquita, Rafael D.  
dc.date.available
2018-06-15T19:27:45Z  
dc.date.issued
2016-06  
dc.identifier.citation
Schama, Renata; Pedrini, Nicolás; Juarez, Marta Patricia; Nelson, David R.; Torres, André; et al.; Rhodnius prolixus supergene families of enzymes potentially associated with insecticide resistance; Pergamon-Elsevier Science Ltd; Insect Biochemistry And Molecular Biology; 69; 6-2016; 91-104  
dc.identifier.issn
0965-1748  
dc.identifier.uri
http://hdl.handle.net/11336/48856  
dc.description.abstract
Chagas disease or American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi. Once known as an endemic health problem of poor rural populations in Latin American countries, it has now spread worldwide. The parasite is transmitted by triatomine bugs, of which Rhodnius prolixus (Hemiptera, Reduviidae, Triatominae) is one of the vectors and a model organism. This species occurs mainly in Central and South American countries where the disease is endemic. Disease prevention focuses on vector control programs that, in general, rely intensely on insecticide use. However, the massive use of chemical insecticides can lead to resistance. One of the major mechanisms is known as metabolic resistance that is associated with an increase in the expression or activity of detoxification genes. Three of the enzyme families that are involved in this process – carboxylesterases (CCE), glutathione s-transferases (GST) and cytochrome P450s (CYP) – are analyzed in the R. prolixus genome. A similar set of detoxification genes to those of the Hemipteran Acyrthosiphon pisum but smaller than in most dipteran species was found in R. prolixus genome. All major CCE classes (43 genes found) are present but the pheromone/hormone processing class had fewer genes than usual. One main expansion was detected on the detoxification/dietary class. The phosphotriesterase family, recently associated with insecticide resistance, was also represented with one gene. One microsomal GST gene was found and the cytosolic GST gene count (14 genes) is extremely low when compared to the other hemipteran species with sequenced genomes. However, this is similar to Apis mellifera, a species known for its deficit in detoxification genes. In R. prolixus 88 CYP genes were found, with representatives in the four clans (CYP2, CYP3, CYP4 and mitochondrial) usually found in insects. R. prolixus seems to have smaller species-specific expansions of CYP genes than mosquitoes and beetles, among others. The number of R. prolixus CYP genes is similar to the hemipteran Ac. pisum, although with a bigger expansion in CYP3 and CYP4 clans, along with several gene fragments, mostly in CYP4 clan. Eleven founding members of new families were detected, consisting of ten genes in the CYP3 clan and 1 gene in the CYP4 clan. Members of these clans were proposed to have important detoxification roles in insects. The identification of CCE, GST and CYP genes is of utmost importance for directing detoxification studies on triatomines that can help insecticide management strategies in control programs.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Rhodnius Prolixus  
dc.subject
Carboxylesterase  
dc.subject
Glutathione S-Transferase  
dc.subject
Cytochrome P450  
dc.subject.classification
Otras Ciencias Biológicas  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Rhodnius prolixus supergene families of enzymes potentially associated with insecticide resistance  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-06-14T19:06:38Z  
dc.journal.volume
69  
dc.journal.pagination
91-104  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Schama, Renata. Instituto Oswaldo Cruz; Brasil  
dc.description.fil
Fil: Pedrini, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata ; Argentina  
dc.description.fil
Fil: Juarez, Marta Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata ; Argentina  
dc.description.fil
Fil: Nelson, David R.. University of Tennessee; Estados Unidos  
dc.description.fil
Fil: Torres, André. Instituto Oswaldo Cruz; Brasil  
dc.description.fil
Fil: Valle, Denise. Instituto Oswaldo Cruz; Brasil  
dc.description.fil
Fil: Mesquita, Rafael D.. Universidade Federal do Rio de Janeiro; Brasil. Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular; Brasil  
dc.journal.title
Insect Biochemistry And Molecular Biology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.ibmb.2015.06.005  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0965174815300084